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Motivation

•Exploit an abstract subgoal structure of a task.

•Temporal abstractions have been represented using automata across sev-
eral areas, like reinforcement learning (RL) and automated planning.

Problem

Current RL methods use handcrafted automata.

Proposed Approach

ISA (Induction of Subgoal Automata)

A method for learning and exploiting a minimal automaton from observa-
tion traces perceived by an RL agent.

•Learn an automaton whose transitions are labeled by propositional formu-
las representing subgoals.

•The automata learning is formulated as an inductive logic programming
task, and sped up using a symmetry breaking mechanism.

•The automata can be exploited by RL algorithms.

Tasks

The tasks are episodic POMDPs MΣ = ⟨S, ST , SG,Σ, A, p, r, γ, ν⟩ where:
•S is a set of latent states,

•ST ⊆ S is a set of terminal latent states,

•SG ⊆ ST is a set of goal latent states,

•Σ is a set of visible states,

• ν : S → ∆(Σ) is a mapping from latent states to probability distributions
over visible states,

•A, p, r and γ are defined as for MDPs.

•Tasks are enhanced with a set of propositions O called observables.

•A labeling function L : Σ → 2O maps a state into subsets of observables
called observations.

Interaction At step t, the agent observes a tuple σt = ⟨σΣ
t , σ

T
t , σ

G
t ⟩, where:

• σΣ
t ∈ Σ is a visible state,

• σT
t = I[st ∈ ST ] indicates if the latent state is terminal, and

• σG
t = I[st ∈ SG] indicates if the latent state is a goal state.

Example In the OfficeWorld (Toro Icarte et al., 2018), where O =
{K,B, o, A,B,C,D, ∗}, ‘deliver coffee to the office while avoiding the ∗’.
•Latent state: (x, y, has K?)

•Visible state: (x, y)
•Goal state: (4, 4,⊤)

•Terminal states: (4, 7,⊤), (4, 7,⊥), . . .

Assumptions

1. The Markov property can be obtained through the combination of visible
states and histories of observations.

2. A history of observations is sufficient to determine whether a terminal state
is reached and, if so, whether it is a goal state.

Learning Subgoal Automata from Traces

Input

•A set of states U ⊇ {u0, uA, uR}.
•A set of observables O.

•A set of traces ΛG
L,O ∪ ΛD

L,O ∪ ΛI
L,O.

•A max. number of edges κ between states.

Output

The automaton’s transition function such that the automaton:

• accepts all goal traces ΛG
L,O,

• rejects all dead-end traces ΛD
L,O,

• neither accepts nor rejects incomplete traces ΛI
L,O.

Example (simplified)

Transition Function: ed(u0, u1, 1). ed(u1, uA, 1).
δ(u0, u1, 1, T) : - obs(K, T), step(T).
δ(u1, uA, 1, T) : - obs(o, T), not obs(∗, T), step(T).

Trace: obs(K, 1). obs(o, 4).

Agent

Automaton

u0start

uAu1 uR

K ∗ ∧ ¬K

∗

o ∧ ¬∗

ILASP [Law et al., 2015]

Examples
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Symmetry Breaking

Encode rules that impose a unique BFS traversal.
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RL Algorithms

Hierarchical RL with Options (Sutton et al., 1999)

•Two decision levels:

1. From a given automaton state, choose a subgoal.

2. Given a subgoal, choose primitive actions.

•The policy can be suboptimal.

QRM (Toro Icarte et al., 2018)

•Transform automaton into a reward machine.

•Learns a policy over Σ× U .

•Guarantees optimality in the tabular case.

Interleaved Learning Algorithm

RL and automata learning are interleaved.

•The initial automaton does not accept nor reject
anything.

• ILASP runs when a counterexample is found.

•The number of states increases when the automaton
learning task is UNSAT (iterative deepening).

→ A minimal automaton is found for a specific κ.

Experiments

•Domains: OfficeWorld (Toro Icarte et al.,
2018), CraftWorld (Andreas et al., 2017; Toro
Icarte et al., 2018) andWaterWorld (Toro Icarte
et al., 2018).

•Given a set of task instances, simultaneously:

• learn a policy for each of these, and

• an automaton that generalizes to all of them.

•Default automaton learning: symmetry breaking,
acyclicity, κ = 1, trace compression.

• 20 runs for each experiment.
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Time (s.) # Examples Example Length

All G D I

Coffee 0.4 (0.0) 8.7 (0.4) 2.4 (0.1) 3.0 (0.1) 3.2 (0.3) 2.8 (2.1)
CoffeeMail 18.9 (3.3) 29.0 (1.5) 3.9 (0.3) 9.3 (0.6) 15.8 (1.0) 4.0 (2.6)
VisitABCD 163.2 (44.3) 54.9 (3.8) 1.6 (0.1) 15.2 (0.9) 38.1 (3.1) 5.5 (3.1)

Automaton learning statistics for OfficeWorld tasks (HRLG)

Acyclic Cyclic

No SB SB No SB SB

Coffee 0.5 (0.0) 0.4 (0.0) 0.5 (0.0) 0.5 (0.0)
CoffeeMail 277.4 (70.2) 18.9 (3.3) 4204.3 (1334.4)* 774.7 (434.4)
VisitABCD 1070.0 (725.6) 163.2 (44.3) 3293.5 (1199.2)* 1961.7 (1123.8)

Total automaton learning time when symmetry breaking is disabled
(No SB) and enabled (SB) using HRLG. ∗ = timed out 1-10 runs.
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