Motivation

- Exploit an abstract subgoal structure of a task.
- Temporal abstractions have been represented using *automata* across several areas, like *reinforcement learning* (RL) and *automated planning*.

Problem

Current RL methods use *handcrafted automata*.

Proposed Approach

ISA (Induction of Subgoal Automata) A method for learning and exploiting a minimal automaton from observation traces perceived by an RL agent.

- Learn an automaton whose transitions are labeled by propositional formulas representing *subgoals*.
- The *automata learning* is formulated as an *inductive logic programming* task, and *sped up* using a *symmetry breaking* mechanism.
- The automata can be exploited by RL algorithms.

Tasks

The tasks are *episodic POMDPs* $\mathcal{M}^{\Sigma} = \langle S, S_T, S_G, \Sigma, A, p, r, \gamma, \nu \rangle$ where:

- S is a set of *latent* states,
- $S_T \subseteq S$ is a set of *terminal* latent states,
- $S_G \subseteq S_T$ is a set of *goal* latent states,
- Σ is a set of *visible* states,
- $\nu: S \to \Delta(\Sigma)$ is a mapping from latent states to probability distributions over visible states,
- A, p, r and γ are defined as for MDPs.
- Tasks are enhanced with a set of propositions \mathcal{O} called *observables*.
- A labeling function $L: \Sigma \to 2^{\mathcal{O}}$ maps a state into subsets of observables called *observations*.

Interaction At step t, the agent observes a tuple $\boldsymbol{\sigma}_t = \langle \sigma_t^{\Sigma}, \sigma_t^T, \sigma_t^G \rangle$, where:

- $\sigma_t^{\Sigma} \in \Sigma$ is a visible state,
- $\sigma_t^T = \mathbb{I}[s_t \in S_T]$ indicates if the latent state is terminal, and
- $\sigma_t^G = \mathbb{I}[s_t \in S_G]$ indicates if the latent state is a goal state.

Example In the OFFICEWORLD (Toro Icarte et al., 2018), where $\mathcal{O} =$ $\{\clubsuit, \boxtimes, o, A, B, C, D, *\}$, 'deliver coffee to the office while avoiding the *'.

- Latent state: $(x, y, has \underline{\clubsuit}?)$ Goal state: $(4, 4, \top)$
- Terminal states: $(4, 7, \top), (4, 7, \bot), \ldots$ • Visible state: (x, y)

Assumptions

- 1. The Markov property can be obtained through the combination of visible states and histories of observations.
- 2. A history of observations is sufficient to determine whether a terminal state is reached and, if so, whether it is a goal state.

INDUCTION AND EXPLOITATION OF SUBGOAL AUTOMATA FOR REINFORCEMENT LEARNING

Daniel Furelos-Blanco¹, Mark Law¹, Anders Jonsson², Krysia Broda¹, and Alessandra Russo¹

¹Imperial College London, UK ²Universitat Pompeu Fabra, Barcelona, Spain

Learning Subgoal Automata from Traces

ne (s.)		# Ex	Example Length		
	All	G	D	Ι	
.4 (0.0)	8.7(0.4)	2.4(0.1)	3.0 (0.1)	3.2(0.3)	2.8(2.1)
.9(3.3)	29.0(1.5)	3.9(0.3)	9.3(0.6)	15.8(1.0)	4.0(2.6)
2(44.3)	54.9(3.8)	1.6(0.1)	15.2(0.9)	38.1 (3.1)	5.5(3.1)

Acyc	elic	Cyclic		
No SB	SB	No SB	SB	
0.5(0.0)	0.4(0.0)	0.5(0.0)	0.5(0.0)	
277.4 (70.2)	18.9(3.3)	$4204.3 (1334.4)^*$	774.7 (434.4)	
)70.0 (725.6)	163.2(44.3)	$3293.5 (1199.2)^*$	1961.7 (1123.8)	