
Learning and Exploiting Reward Machines for

Reinforcement Learning

Daniel Furelos Blanco

Department of Computing

Imperial College London

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

October 2023





Statement of Originality

I, Daniel Furelos Blanco, declare that the work in this thesis is my own. The work of others has

been appropriately referenced. A full list of references is given in the bibliography.

The copyright of this thesis rests with the author. Unless otherwise indicated, its con-

tents are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International Licence (CC BY NC-SA). Under this licence, you may copy and re-

distribute the material in any medium or format. You may also create and distribute

modified versions of the work. This is on the condition that; you credit the author,

do not use it for commercial purposes and share any derivative works under the same

licence. When reusing or sharing this work, ensure you make the licence terms clear

to others by naming the licence and linking to the licence text. Where a work has

been adapted, you should indicate that the work has been changed and describe those

changes. Please seek permission from the copyright holder for uses of this work that

are not included in this licence or permitted under UK Copyright Law.

i



ii



Abstract

Reinforcement learning (RL) with non-Markovian rewards requires agents to learn history-

dependent policies, which is particularly challenging in long-horizon or sparse reward settings. Re-

ward machines (RMs) are finite-state machines that represent non-Markovian reward functions in

terms of high-level events. By compactly encoding high-level event histories, RMs thereby consti-

tute an external memory that makes rewards Markovian and enables the applicability of standard

RL algorithms in non-Markovian reward settings. The structure elucidated by RMs facilitates task

decomposition, allowing policy learning to become more efficient when rewards are sparse. Nev-

ertheless, the potential of RMs is limited by the complexity of handcrafting them and the lack of

reusability within larger RMs. In this thesis, we address these problems.

In the first part of the thesis, we devise a method for learning minimal RMs from traces of high-

level events observed by an RL agent. The learning is powered by an inductive logic programming

system and is launched when the current RM does not correctly recognize a trace. To make RM

learning more efficient, we conceive a symmetry breaking mechanism to shrink the search space

whilst remaining complete. We empirically demonstrate that exploiting a learned RM leads to

performance on par with a handcrafted one.

In the second part of the thesis, we build hierarchies of RMs (HRMs) by endowing RMs with the

ability to call each other, enabling the reusability of the RMs’ structures and policies. In particular,

the HRMs are exploited by treating each call as an independently solvable subtask, and learned

through a curriculum-based method extending our RM learning approach. Our experiments reveal

that (i) exploiting a handcrafted HRM leads to faster convergence than with a flat HRM, and

(ii) learning an HRM is feasible in cases where its equivalent flat representation is not.
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Chapter 1

Introduction

Reinforcement learning (RL; Sutton and Barto, 2018) is one of the most promising and rapidly

advancing fields in artificial intelligence (AI) research. Fundamentally, RL involves training agents

with the aim of maximizing the cumulative reward they receive through repeated trial-and-error

interactions with an environment. The fact that many tasks can be seen through the lens of max-

imizing reward makes RL a highly versatile decision-making paradigm. Indeed, it is hypothesized

“that all what we mean by goals and purposes can be well thought of as maximization of the expected

value of the cumulative sum of a received scalar signal (reward)” (Sutton, 2004; Littman, 2018); in a

similar vein, von Neumann and Morgenstern (1947) state that “rational” agents maximize expected

utility. Examples of reinforcement learning agents include a cleaning robot rewarded based on the

percentage of area cleaned, or a Sudoku-solving agent receiving +1 reward for solving a board.

Unlike methods in the supervised learning paradigm, reinforcement learning methods do not learn

from extensive labeled data but from the experience generated by interacting with the environment.

However, learning from interaction introduces several key challenges, as summarized by Abel (2020):

• Exploration vs. Exploitation. Trading off between decisions known to be good (exploita-

tion) and decisions that may lead to higher cumulative rewards (exploration).

• Credit assignment. Determining what decisions are crucial to maximizing cumulative re-

ward.

• Generalization. Enabling knowledge gained from past experiences to inform decisions in

new situations.

In spite of these challenges, the combination of RL and the recent advances in deep learning (Good-

fellow et al., 2016), known as deep reinforcement learning (DRL), has led to impressive successes

across different fields, including human-level game playing (Mnih et al., 2015; Silver et al., 2016;

Vinyals et al., 2019; Wurman et al., 2022), flying balloons in the stratosphere (Bellemare et al.,

2020), beating humans at curling (Won et al., 2020), border testing (Bastani et al., 2021) and nu-

clear fusion (Degrave et al., 2022). Nevertheless, most current DRL approaches suffer from important

shortcomings inherent to deep learning methods (Kaelbling, 2020; Shanahan and Mitchell, 2022):

low sample efficiency (i.e., lots of training data is required), limited transferability (i.e., learned

knowledge is hardly reusable), and poor out-of-distribution generalization. There is widespread con-

sensus that these shortcomings can be mitigated through abstractions (Ho et al., 2019; Konidaris,

1
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2019; Kaelbling, 2020; Shanahan and Mitchell, 2022); namely, they facilitate generalization, support

transferability, increase sample efficiency and, if structured, also enable composability (i.e., combin-

ing existing pieces of knowledge).

Finite-state machines (FSMs) are a widely exploited abstraction in AI, with applications in

robotics (Brooks, 1989), games (Buckland, 2004), and automated planning (Bonet et al., 2009;

Hu and De Giacomo, 2013; Segovia-Aguas et al., 2018). In reinforcement learning, they have been

applied in several ways, including representing decision hierarchies (Parr and Russell, 1997), encoding

external memory in partially observable environments (Meuleau et al., 1999; Toro Icarte et al., 2019),

and interpreting an agent’s decisions (Koul et al., 2019). One type of FSM abstraction that has

gained significant attention in recent years is the reward machine (RM; Toro Icarte et al., 2018a,

2022), which represents a task’s reward function in terms of high-level events. The structure of an

RM consists of states connected through edges labeled with (i) a condition representing a subgoal

in terms of high-level events, and (ii) a reward given upon satisfying the condition. By revealing the

structure of a task through an RM, agents can:

• Learn policies over histories. Generally, RL agents learn policies (i.e., mappings from ob-

servations to actions) based on the most recent observation; however, there are scenarios where

reward depends on history (i.e., on the full interaction), such as in partially observable envi-

ronments. In these cases, agents must learn policies over histories, which can be prohibitively

expensive since histories can be arbitrarily long (Spaan, 2012). Reward machines constitute

compact history representations in terms of high-level events; therefore, RL agents can learn

policies over the states of the RM, which is far more efficient than capturing the full history.

In the same vein, generalizing over compact histories represented by RMs is easier than over

full histories.

• Perform task decomposition. Reward machines enable decomposing the captured task

into subtasks. For instance, the task “deliver coffee to the office” can be broken down into two

subtasks: going to the coffee machine for a coffee, and going to the office. In particular, Toro

Icarte et al. (2018a) propose decomposing a task into one subtask per RM state; that is, learning

a policy for each RM state. The policies depend on each other; hence, essentially, a single but

decomposed policy is learned. The experience generated by a policy is leveraged to train all

policies, improving sample efficiency compared to standard methods. Task decomposition is

especially relevant in sparse reward tasks, where the reward is zero most of the time.

Overall, abstracting tasks through RMs enables tackling complex tasks efficiently and alleviates

various shortcomings of DRL methods (i.e., sample efficiency, knowledge reusability, generalization).

Nevertheless, the applicability and benefits of reward machines are limited by several factors:

1. The complexity of handcrafting them. Manually designing a reward machine for any

given task is infeasible in practice.

2. The exploitation at a single timescale. Subtask policies learned by exploiting RMs at

a single timescale have limited reusability since they depend on each other (i.e., all aim to

maximize cumulative reward in the global task). Furthermore, these approaches are often less

sample-efficient than those employing multiple timescales since rewards are more distant (Di-

etterich et al., 2008, Section 5.8).
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3. The lack of composability. Reward machines cannot call each other; that is, an RM cannot

be reused within other RMs. Therefore, designing or learning RMs from scratch is highly

inefficient.

In this thesis, we devise methods to address these limitations, increasing the applicability of RMs

and boosting their advantages. The thesis statement is as follows:

Thesis Statement. The applicability of reward machines can be expanded and their

benefits enhanced by learning them from traces, exploiting them at multiple timescales,

and hierarchically composing them.

In the remainder of this chapter, we detail our contributions (Sections 1.1–1.2), list the publica-

tions this thesis builds upon (Section 1.3), and outline the structure of the thesis (Section 1.4).

1.1 Learning and Exploiting Reward Machines

In the first part of the thesis, we describe methods for learning and exploiting RMs. In what follows,

we summarize our contributions on both fronts and their joint evaluation.

On the exploitation side, we devise a method leveraging the fact that RMs are inherently

amenable to learning at multiple timescales. Namely, the conditions labeling the edges constitute

independently solvable subtasks (i.e., oblivious to the global task), and the agent learns to choose

the best subtask to perform from each RM state; hence, decision-making is implemented at two

timescales. Decomposing a task across multiple timescales enables reusability and induces denser

rewards; consequently, sample efficiency is often increased (Dietterich et al., 2008, Section 5.8). In

a similar vein, we propose methods for defining additional rewards based on the structure of the

RM and apply them in the single-timescale approach by Toro Icarte et al. (2018a). We describe

both approaches using the options framework (Sutton et al., 1999; Precup, 2001), a formalism for

temporal abstraction in RL.

On the learning side, we represent RMs using a logic programming language and employ a

state-of-the-art inductive logic programming system to learn these representations from traces of

high-level events observed by the RL agent. To speed up learning, we devise a symmetry breaking

mechanism that discards multiple equivalent RMs during the search for a solution. The learning

of an RM is interleaved with the exploitation algorithm of choice: a new RM is learned when the

currently exploited one does not cover a trace observed by the agent. The proposed interleaving

scheme guarantees the RMs are minimal; that is, they have the fewest possible states required to

cover the traces.

The proposed interleaving method is evaluated in several grid-world and continuous state space

problems using different exploitation algorithms. We provide an in-depth empirical analysis of the

RM learning performance in terms of the traces, the symmetry breaking, and specific restrictions

imposed on the final learnable RM. For each class of RL problem, we show that exploiting learned

RMs induces effective policies whose performance is comparable to that obtained by exploiting

handcrafted RMs.
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1.2 Learning and Exploiting Hierarchies of Reward Machines

In the second part of the thesis, we introduce a formalism for composing RMs hierarchically, along

with methods for learning and exploiting these hierarchies. The core objectives are scaling up the

learning of RMs and enabling exploitation at arbitrarily many timescales.

We enhance the abstraction power of RMs by defining hierarchies of RMs (HRMs), where con-

stituent RMs can call other RMs. By composing RMs hierarchically, the lack of usability of RMs

within other RMs is addressed. Theoretically, we prove that any HRM can be transformed into an

equivalent flat HRM that behaves exactly like the original RMs; besides, we show that under certain

conditions, the equivalent flat HRM can have exponentially more states and edges.

To exploit HRMs, we extend our previously outlined two-timescale algorithm. This method treats

each RM call as a subtask and thus exploits HRMs at arbitrarily many timescales, considering a

richer range of increasingly abstract and reusable subtasks. Empirically, leveraging a handcrafted

HRM enables faster convergence than an equivalent flat HRM, showing that hierarchically composing

RMs improves sample efficiency.

To learn HRMs, we introduce a curriculum-based method that learns an HRM from traces for

each task in a list. The HRMs are learned such that those for more complex tasks can reuse those for

simpler tasks. The learning system and the interleaving scheme are analogous to those we propose

for standard RMs. In line with the theory, our experiments reveal that decomposing an RM into

several smaller RMs is crucial to make its learning feasible (i.e., the flat HRM cannot be efficiently

learned from scratch) for two reasons:

1. The constituent RMs are simpler; that is, they have fewer states and edges since calls to other

RMs are used.

2. The policies for previously learned RMs can be used to efficiently explore the environment in

the search for traces in more complex tasks.

Moreover, we show that exploiting the learned HRMs is more effective than employing no external

memory or neural memories to capture histories.

1.3 Publications

This thesis includes revised and expanded content from the following published works (listed in

chronological order):

• D. Furelos-Blanco, M. Law, A. Russo, K. Broda, and A. Jonsson. Induction of Subgoal

Automata for Reinforcement Learning. In Proceedings of the 34th AAAI Conference on

Artificial Intelligence (AAAI), pages 3890–3897, 2020.

• D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. Induction and Ex-

ploitation of Subgoal Automata for Reinforcement Learning. Journal of Artificial Intelligence

Research, 70:1031–1116, 2021.

• D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. Hierarchies of Reward

Machines. In Proceedings of the 40th International Conference on Machine Learning (ICML),

pages 10494–10541, 2023.
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– Early versions of this work were presented at the 5th Multidisciplinary Conference on Re-

inforcement Learning and Decision Making (RLDM) and the Planning and Reinforcement

Learning (PRL) Workshop at the 32nd International Conference on Automated Planning

and Scheduling (ICAPS).

The following publications, in chronological order, have been also authored during the PhD

program but are not presented as part of this thesis:

• D. Furelos-Blanco and A. Jonsson. Solving Multiagent Planning Problems with Concurrent

Conditional Effects. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence

(AAAI), pages 7594–7601, 2019.

• L. Ardon, D. Furelos-Blanco, and A. Russo. Learning Reward Machines in Cooperative

Multi-Agent Tasks. In Proceedings of the Neuro-Symbolic AI for Agent and Multi-Agent

Systems (NeSyMAS) Workshop at the 22nd International Conference on Autonomous Agents

and Multiagent Systems (AAMAS), 2023.

• N. Grinsztajn, D. Furelos-Blanco, S. Surana, C. Bonnet, and T. D. Barrett. Winner Takes

It All: Training Performant RL Populations for Combinatorial Optimization. In Proceedings

of the 37th Conference on Neural Information Processing Systems (NeurIPS), 2023.

• C. Bonnet, D. Luo, D. Byrne, S. Surana, P. Duckworth, V. Coyette, L. I. Midgley, S. Abramowitz,

E. Tegegn, T. Kalloniatis, O. Mahjoub, M. Macfarlane, A. P. Smit, N. Grinsztajn, R. Boige,

C. N. Waters, M. A. Mimouni, U. A. Mbou Sob, R. de Kock, S. Singh, D. Furelos-Blanco,

V. Le, A. Pretorius, and A. Laterre. Jumanji: a Diverse Suite of Scalable Reinforcement Learn-

ing Environments in JAX. In Proceedings of the 12th International Conference on Learning

Representations (ICLR), 2024.

1.4 Thesis Structure

The thesis is organized as follows. We start by describing relevant background material on reinforce-

ment learning and inductive learning of answer set programs in Chapter 2. Our contributions are

split into two parts with a similar structure. Part I presents our work on learning and exploiting

reward machines:

• Chapter 3 formalizes the tasks and reward machines considered throughout Part I. We in-

troduce a representation for RMs using a logic programming language, and devise rules for

enforcing determinism and a unique indexing of the states and edges in RMs.

• Chapter 4 introduces two RL algorithms for exploiting RMs and a method for learning RMs

from traces that leverages the representation in the previous chapter. The exploitation and

learning mechanisms are then assembled in an algorithm that interleaves them.

• Chapter 5 performs an experimental evaluation of the presented methods across different do-

mains.

Part II presents our work on learning and exploiting hierarchies of reward machines:
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• Chapter 6 develops the formalism for hierarchically composing RMs, the core building block of

Part II. Theoretical results regarding the equivalence of these hierarchies with standard RMs

are proven. Analogously to Chapter 3, we introduce a representation for the hierarchies using

a logic programming language.

• Chapter 7 describes an algorithm that exploits the structure of a hierarchy of reward machines

at multiple timescales, and a method for learning hierarchies from traces. These methods are

combined into a curriculum-based algorithm that interleaves them.

• Chapter 8 evaluates the proposed learning and exploitation methods in several domains.

The following two chapters wrap up the thesis. Chapter 9 discusses relevant related work, and

Chapter 10 concludes by summarizing our contributions and outlining possible future work. Appen-

dices A and B respectively extend Parts I and II with illustrations of reward machines and additional

experimental results.



Chapter 2

Background

In this chapter, we survey the key concepts of reinforcement learning (Section 2.1) and inductive

learning of answer set programs (Section 2.2) that lay the foundations for this thesis.

2.1 Reinforcement Learning

Reinforcement learning (RL; Sutton and Barto, 2018) is a learning framework where an agent learns

how to act in an environment to maximize some reward signal. In the following sections, we describe

the fundamental concepts in RL (Section 2.1.1) and its combination with deep neural networks

(Section 2.1.2), as well as settings where an agent acts at multiple levels of abstraction (Section 2.1.3)

and learns from history-dependent rewards (Section 2.1.4). Finally, we introduce reward machines

(Section 2.1.5), the component around which this thesis is built.

2.1.1 Fundamentals

In this section, we introduce the key concepts in RL on which the thesis builds upon.

The Agent-Environment Interaction and Markov Decision Processes

The environment is often modeled as a Markov decision process (MDP; Bellman, 1957; Puterman,

1994). Formally, a finite MDP is a tuple 〈S,A, p, r, γ〉 where S is the finite set of states, A is the

finite set of actions, p : S × A → ∆(S) is the transition probability function, r : S × A × S → R
is the reward function, and γ ∈ [0, 1] is the discount factor. The transition probability and reward

functions constitute the dynamics or model of the environment.

Figure 2.1 illustrates the agent-environment interaction in a Markov decision process. At time t,

the agent observes the environment’s state st ∈ S, and performs an action at ∈ A. The environment

then outputs the next state st+1 ∼ p(· | st, at) and a reward rt+1 = r(st, at, st+1). We denote the

state-action history at time t by ht = 〈s0, a0, . . . , st−1, at−1, st〉 ∈ (S ×A)
∗ × S. The interaction is

called episodic if it lasts for a finite number of steps (i.e., there is a distinguished terminal state), or

continuing if the number of steps is unlimited. In this thesis, we focus on the episodic setting.

The MDP dynamics depend only on the current state and the performed action, and not on the

full state-action history. When the current state retains all relevant history information, it is said

7
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Agent

Environment

at

st+1

st

rt+1

rt

Figure 2.1: The agent-environment interaction in an MDP (Sutton and Barto, 2018).

to have the Markov property. Formally,

p(st+1 | ht, at) = p(st+1 | st, at),

r(st, at, st+1 | ht, at) = r(st, at, st+1).

Policies and Value Functions

The objective of the agent is to learn a policy π : S → ∆(A), a mapping from states to probability

distributions over actions, that maximizes the expected sum of discounted reward (or return), Rt =

E[
∑N
k=t+1 γ

k−t−1r(sk−1, ak−1, sk)], where N is a random variable representing the last step of an

episode. The discount factor γ ∈ [0, 1] determines the influence of future rewards. If γ = 0, the

agent aims to maximize immediate rewards. As γ approaches 1, the agent considers future rewards

more strongly. If γ = 1, all future rewards are considered equally.

Reinforcement learning algorithms often involve estimating value functions, which measure the

quality of a given policy. There are two types of value functions:

• The state-value function vπ : S → R is the expected return from a given state under policy π.

Formally,

vπ(s) = Eπ [Rt | st = s]

=
∑
a∈A

π(a | s)
∑
s′∈S

p(s′ | s, a) (r(s, a, s′) + γvπ(s′)) .

• The action-value function qπ : S × A → R is the expected return from a given state-action

pair and following policy π thereafter. Formally,

qπ(s, a) = Eπ [Rt | st = s, at = a]

=
∑
s′∈S

p(s′ | s, a)

(
r(s, a, s′) + γ

∑
a′∈A

π(a′ | s′)qπ(s′, a′)

)
.

These recursively-defined equations are known as Bellman equations.

A policy π is better than another policy π′ if and only if vπ(s) is greater than vπ
′
(s) for all states

s ∈ S. An optimal policy π∗ is a policy that is better than or equal to all other policies. There

might be several optimal policies, all of which share the same optimal state-value function v∗:

v∗(s) = max
π

vπ(s)

= max
a∈A

∑
s′∈S

p(s′ | s, a) (r(s, a, s′) + γv∗(s′)) .
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Likewise, optimal policies also share the same optimal action-value function q∗, which is defined as:

q∗(s, a) = max
π

qπ(s, a)

=
∑
s′∈S

p(s′ | s, a)

(
r(s, a, s′) + γ max

a′∈A
q∗(s′, a′)

)
.

An optimal policy can be induced from q∗(s, a) by choosing the action with the highest value. These

equations are known as Bellman optimality equations.

Algorithms

If the dynamics of the environment are known, an optimal policy can be computed using dynamic

programming methods, such as value iteration (Bellman, 1957). However, in most practical settings,

the dynamics are unknown; thus, the agent needs to interact with the environment to compute an

optimal policy. There are two families of methods based on what the agent primarily estimates:1

• If the model of the environment is estimated, the method is model-based. The learned model

can then be used to estimate the optimal value function or the optimal policy by simulating

the interaction in the MDP.

• If the model of the environment is not estimated, the method is model-free. There are two

types of model-free methods:

– If the optimal action-value function is estimated, the method is value-based.

– If the optimal policy is estimated directly, the method is policy-based.

Algorithms are also categorized as either on-policy or off-policy based on their (i) behavior policy,

which is used for acting, and (ii) target policy, which is the policy being learned. If the behavior and

target policies are the same, the algorithm is on-policy ; otherwise, the algorithm is off-policy.

In this thesis, we concentrate on Q-learning (Watkins and Dayan, 1992), a value-based method

that learns an estimate q̂ of the optimal action-value q∗ for state-action 〈s, a〉 ∈ S × A pair, often

initialized to 0. These estimates are updated using an experience 〈st, at, rt+1, st+1〉 through the

following rule:

q̂(st, at) = q̂(st, at) + α

(
rt+1 + γ max

a′∈A
q̂(st+1, a

′)− q̂(st, at)
)
,

where α ∈ [0, 1] is a learning rate, and the term rt+1 + γmaxa′∈A q̂(st+1, a
′) is called the target.

Q-learning performs bootstrapping since the value function is updated from its own estimations. The

algorithm is off-policy: the target policy is a greedy policy, which takes the action with the highest

value at a given state, and the behavior policy is usually an ε-greedy policy, which acts greedily with

probability 1− ε and selects an action uniformly at random with probability ε. The ε-greedy policy

balances exploitation by acting greedily and exploration by acting randomly. If the agent always acts

greedily, it will likely not visit important regions of the state space, and the resulting policy will be

poor. Indeed, Q-learning requires the value for every state-action pair to be updated infinitely often

for converging to the optimal action-value function; hence, balancing exploitation and exploration

is crucial.
1The families might be different in other works. For instance, Abel (2020) distinguishes between model-based,

model-free and policy-based, and defines model-free methods as those that compute the action-value function.
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2.1.2 Deep Reinforcement Learning

Tabular methods employ tables to store value estimates; for instance, Q-learning (see Section 2.1.1)

keeps a table of size S ×A to store the action-values. These methods suffer from two problems that

strongly limit their applicability:

1. Lack of scalability. These methods cannot scale to large state and action spaces since the

system’s memory inherently limits the table size, and learning a value for each state becomes

too slow.

2. Lack of generalization. The estimations in observed states should generalize to similar

unseen states.

To exemplify these limitations, let us consider an environment with a continuous state space. First,

naively keeping a table of size S × A is unfeasible since S is infinite. Second, it is unlikely that the

agent will observe the same state several times, so it is important to generalize.

To address the previous problems, the optimal action-value function can be approximated. Func-

tion approximation with deep learning methods (Goodfellow et al., 2016) is the de facto standard

given its success on complex tasks such as speech recognition (Hinton et al., 2012b), object recogni-

tion (Krizhevsky et al., 2012), and language translation (Sutskever et al., 2014). The combination

of reinforcement learning and deep learning, known as deep reinforcement learning (DRL; Arulku-

maran et al., 2017), endows agents with the ability to generalize and tackle high-dimensional states

(e.g., images). In this thesis, we focus on a specific type of DRL method called deep Q-networks,

which we describe (along with some extensions) in the following paragraphs.

Deep Q-networks (DQNs)

A deep Q-network (DQN; Mnih et al., 2015) employs a deep neural network with parameters θ to

approximate the optimal action-value function q∗(s, a;θ). The updates are performed akin to Q-

learning; however, learning these functions using non-linear function approximators, like deep neural

networks, is unstable and may diverge since (i) states in successive experiences are strongly corre-

lated, and (ii) the target is constantly changing. To address (i), DQNs employ a replay buffer (Lin,

1992), which stores the agent’s experiences 〈st, at, rt+1, st+1〉. The DQN is trained from minibatches

of experiences sampled uniformly at random from the buffer, hence breaking the correlations. To

address (ii), a separate DQN called the target network with parameters θ− is used to compute the

target. The target is prevented from continuous changes by periodically updating θ− with the val-

ues of θ and keeping them fixed between updates. The Q-learning update uses the following loss

function:

E〈st,at,rt+1,st+1〉∼U(D)

[
(yt − q(st, at;θ))

2
]
,

where yt = rt+1 + γmaxa′∈A q(st+1, a
′;θ−) is the target and D is the replay buffer.

The literature on extending DQNs to address some of their limitations is vast. In the following

paragraphs, we describe those relevant to this thesis. We refer the reader to the work of Hessel

et al. (2018), which describes many of these extensions and combines them into a single algorithm.

However, some limitations of DQNs are better addressed using other DRL algorithms; for example,

the DDPG algorithm (Lillicrap et al., 2016) is applicable in environments with continuous action

spaces, whereas DQNs are not.
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Double Deep Q-networks (DDQNs)

Methods based on Q-learning, including DQNs, can overestimate action-values due to the maximiza-

tion used in the target (van Hasselt, 2010). A possible solution is to modify the target such that the

action selection is decoupled from its evaluation. In particular, Double DQNs (DDQNs; van Hasselt

et al., 2016) use the network with parameters θ for selection and the target network with parameters

θ− for evaluation, which results in the following target:

yt = rt+1 + γq(st+1, arg max
a′∈A

q(st+1, a
′;θ); θ−).

van Hasselt et al. (2016) experimentally show that DDQNs outperform DQNs.

Deep Recurrent Q-networks (DRQNs)

Different strategies have been proposed to apply DQNs in partially observable settings. The sem-

inal work of Mnih et al. (2015) addressed partial observability in Atari games by stacking the

last four frames. However, stacking an arbitrary number of frames (or any observations from

the environment) is not practical in general. Alternatively, recurrent neural networks, such as

LSTMs (Hochreiter and Schmidhuber, 1997), have been successfully used to summarize histories in

complex videogames (Vinyals et al., 2019).

Deep Recurrent Q-networks (DRQNs; Hausknecht and Stone, 2015) extend DQNs by using

LSTMs. LSTMs maintain a hidden state that summarizes the history of states perceived during an

episode; thus, histories of experience must be sampled to compute the hidden state. Hausknecht

and Stone (2015) propose two methods for updating DRQNs based on the length of the sampled

histories:

• Bootstrapped sequential updates. The updates are performed from full episodes sampled

uniformly at random. The hidden state is carried from the start of the episode, enabling a

more accurate representation of it. However, the states in each episode are strongly correlated,

which violates the DQN random sampling policy.

• Bootstrapped random updates. The updates are performed on fixed-length subsequences

from episodes. Both episodes and subsequences are sampled uniformly at random. Although

the violation of the DQN random sampling policy is less severe than in sequential updates,

the updates might be imprecise since the hidden state may be initialized midway through an

episode. Lample and Chaplot (2017) address the latter problem by only considering those states

for which enough history has been provided in the update; that is, while the full subsequence

is used to compute the hidden states, the updates are only applied for part of it. Alternatively,

Kapturowski et al. (2019) propose to store the hidden state in the replay buffer and use it to

initialize the network at training time, but the hidden state produced by an old network might

differ from a newer one.

2.1.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL; Barto and Mahadevan, 2003) methods enable agents to act

at multiple levels of temporal abstraction by decomposing a task into subtasks. These methods have
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several potential benefits. First, learning becomes simpler since learning policies for the subtasks

should be easier than learning a single policy for the overall task. Second, the subtask policies can

be reused across tasks. Third, exploration is more effective since the agent can move in the state

space more efficiently by taking larger steps.

This thesis focuses on a specific HRL framework called options (Sutton et al., 1999; Precup,

2001), which we introduce in the following paragraphs. Other classic frameworks are hierarchical

abstract machines (HAMs; Parr and Russell, 1997; Parr, 1998) and MAXQ (Dietterich, 2000). We

also describe the different types of optimality that emerge in HRL.

Options

The options framework (Sutton et al., 1999; Precup, 2001) generalizes macro-actions (i.e., sequences

of actions) to closed-loop policies. Formally, given an MDP 〈S,A, p, r, γ〉, a (Markov) option is a

tuple ω = 〈Iω, πω, βω〉, where Iω ⊆ S is the option’s initiation set, πω : S → ∆(A) is the option’s

policy, and βω : S → [0, 1] is the option’s termination condition. An option can be started in state

s ∈ S if s ∈ Iω, selects actions according to πω, and terminates in state s′ ∈ S with probability

βω(s′). An action a ∈ A is an option that is applicable in any state (Ia = S), always performs

a (πa(s) = a, ∀s ∈ S), and lasts one step (βa(s) = 1, ∀s ∈ S). Actions are often called primitive

actions to distinguish them from other options.

Given a set of options Ω, several options could be started in a given state s ∈ S. A policy over

options (or metapolicy) Π : S → ∆(Ω) determines what option to start in a state s ∈ S. The

resulting execution model is as follows. A policy over options selects an option ω in a given state

s ∈ S, which in turn selects primitive actions until it terminates. Decision-making hence happens

at two timescales. The execution model can be extended to an arbitrary number of timescales by

defining option policies on one level as policies over options on the next level.

The augmentation of an MDP with a given set of options Ω is a semi-Markov decision pro-

cess (SMDP; Jewell, 1963; de Cani, 1964; Puterman, 1994). SMDPs model problems where actions

can take variable amounts of time. Classical RL algorithms are easily extensible to SMDPs. SMDP

Q-learning (Bradtke and Duff, 1994) extends Q-learning by interpreting the reward as the return

accumulated during a temporally-extended action’s execution and appropriately discounting the tar-

get to reflect the execution time.2 SMDP Q-learning can be used to learn a policy over options by

treating options as indivisible units; that is, by following their policy until termination once they

are selected. The update rule is:

q(st, ωt) = q(st, ωt) + α

(
r + γk max

ω′∈Ω
q(st+k, ω

′)− q(st, ωt)
)
,

where k is the number of steps between st and st+k (i.e., the elapsed time between the initiation

and termination of option ωt), and r =
∑k
j=1 γ

j−1rt+j is the cumulative discounted reward over this

time. SMDP Q-learning converges to an optimal policy over Ω under conditions similar to those for

Q-learning (Parr, 1998). If the set of options includes the primitive actions (formally, A ⊆ Ω), the

optimal policies over Ω are the same as the optimal policies over A; otherwise, the optimal policies

over Ω can be suboptimal.

2Note that we use the term temporally-extended action instead of option since SMDP methods are also applicable
in other HRL frameworks.
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Intra-option learning methods (Sutton et al., 1998) enable learning multiple options from the

experience of another. For instance, one-step intra-option Q-learning updates each option using an

experience 〈st, at, rt+1, st+1〉 generated by one of the options. Since experience accumulates faster,

the convergence speed is often increased. Previously, Kaelbling (1993) proposed a similar method

that updates multiple policies for achieving goals given an experience generated by one of them.

These methods are off-policy, like standard Q-learning, since the learned policies differ from those

generating the experiences.

Types of Optimality

Hierarchies can constrain the set of learnable policies and, therefore, may make learning an optimal

policy impossible. For instance, in the options framework, an optimal policy is guaranteed to be

in the set of learnable policies as long as any primitive action can be selected after each step. In

cases where global optimality is not attainable, we aim to characterize the optimality of the policies

consistent with the hierarchy. Dietterich (2000) identifies two types of optimality in hierarchical

reinforcement learning: hierarchical optimality and recursive optimality. We base our descriptions

on those by Dietterich (2000) and Ghavamzadeh (2005):

• A policy is hierarchically optimal if it achieves the highest cumulative reward among all policies

consistent with the given hierarchy; that is, the policy for the entire hierarchy is a global opti-

mum consistent with the given hierarchy, while the policies of the subtasks are not necessarily

optimal.

• A policy is recursively optimal if it is optimal given the policies of its subtasks. The policy for

each subtask is locally optimal and independent from higher-level tasks; thus, the policies are

highly reusable across different tasks.

Example 2.1.1. Dietterich (2000) illustrates the differences between the different types of optimality

through the grids in Figure 2.2. The agent starts somewhere in the left room and must reach location

g in the right room. There is a high-level subtask per room, each using the actions: up (↑), right (→)

and down (↓). The subtask for the right room is go-to-goal, which terminates when the agent

reaches g. We consider two possible subtasks for the left room:

• exit-room, which terminates when the agent moves to the right room through either the upper

or lower doors. Figure 2.2a displays a recursively optimal policy since the subtask policies are

both locally optimal: the agent leaves the left room through the shortest path to a door, and

reaches g in the right room through the shortest path to it. The policy is not globally optimal

since the agent might exit the left room through the lower door, which is suboptimal from the

global task perspective. The policy is not hierarchically optimal either: the exit-room subtask

allows the agent to leave the left room through any door, but using the upper door is the best

choice since the agent needs fewer steps to reach g. Indeed, Figure 2.2b shows a hierarchically

optimal policy where the agent always leaves through the upper room; in this case, the policy is

also globally optimal since the agent completes the global task in the fewest steps, but it is not

recursively optimal since the agent does not follow the shortest path to a door in the left room.

• exit-room-through-lower-door, which terminates when the agent moves to the right room

through the lower door. Figure 2.2c illustrates a hierarchically optimal policy because it is an
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Figure 2.2: Illustrations of the different types of optimality. See Example 2.1.1 for details.

optimum consistent with the given hierarchy; that is, the hierarchy constrains the policy such

that the agent can only leave using the lower door. The policy is also recursively optimal since

the policies for both rooms are locally optimal. However, it is not globally optimal.

2.1.4 Non-Markovian Reward Decision Processes

The dynamics of an environment modeled as an MDP are assumed to be Markovian; that is, the

dynamics solely depend on the current state and the performed action (see Section 2.1.1). However,

making such an assumption is unrealistic (Whitehead and Lin, 1995): in real-world settings, the

true state of the environment is often hidden (e.g., due to insufficient or faulty sensors). In addition,

Markovian rewards cannot express certain types of tasks (Abel et al., 2021).

In this thesis, we focus on scenarios where the reward function is non-Markovian, also known

as non-Markovian reward decision processes (NMRDPs; Bacchus et al., 1996). Formally, the non-

Markovian reward function is defined as r : (S ×A)
+ ×S → R; that is, the reward obtained by the

agent at each step depends on the state-action history. The transition probability function remains

Markovian. We exemplify non-Markovian rewards through a simple domain.

Example 2.1.2. The OfficeWorld (Toro Icarte et al., 2018a), illustrated in Figure 2.3, is a

12 × 9 grid containing different special locations. The state space S = {0, . . . , 11} × {0, . . . , 8} is

determined by the grid positions. The agent, depicted by , can move in the four cardinal directions;

that is, the action space is A = {up, down, left, right}. The agent always moves in the intended

direction (i.e., actions are deterministic), and remains in the same location if it moves towards a

wall. The tasks consist of visiting a sequence of locations while avoiding the decorations (∗). A

reward of 1 is given when the locations in the sequence have been visited; otherwise, the reward is 0.

We consider the following three tasks:

• Coffee: go to the coffee location (K) followed by the office (o).

• CoffeeMail: go to the coffee location (K) and the mail location (B) in any order, followed

by the office (o).

• VisitABCD: go to locations A, B, C and D in order.

Rewards are non-Markovian since they are determined by the history of states rather than the current

state alone. For instance, the state-action history h = 〈〈4, 6〉, left, 〈3, 6〉, right, 〈4, 6〉, down, 〈4, 5〉,
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Figure 2.3: An instance of the OfficeWorld domain (Toro Icarte et al., 2018a).

down, 〈4, 4〉〉 yields a reward of 1 in Coffee since location K is visited before location o.

Non-Markovian rewards are closely related to partial observability. Environments involving par-

tial observability are formalized as partially observable MDPs (POMDPs; Åström, 1965; Kaelbling

et al., 1998; Hasinoff, 2003; Spaan, 2012), which hide the state from the agent and instead provide an

observation at each step. While the reward function of the POMDP is Markovian over the (hidden)

states, the rewards become non-Markovian from the agent perspective since the observations are

non-Markovian. Therefore, NMRDPs and POMDPs are similar in that an agent must learn a policy

from non-Markovian reward signals; however, the transition function of NMRDPs is Markovian,

whereas the transition function over observations in POMDPs might not be. In this thesis, we build

upon the NMRDP formalism, but the methods introduced here could be framed in the context of

POMDPs as long as the transitions over observations are Markovian; indeed, some of our original

work used the latter (Furelos-Blanco et al., 2021). We refer the reader to the works by Toro Icarte

et al. (2019, 2023) for POMDPs with non-Markovian transitions over observations.

There are different kinds of approaches to dealing with non-Markovian rewards. The straight-

forward option is to learn memoryless policies by applying standard RL algorithms for MDPs, such

as Q-learning; however, these approaches are limited, as illustrated in the following example.

Example 2.1.3. Given the Coffee task in the OfficeWorld domain, the agent in Figure 2.3

cannot make an accurate decision in position 〈4, 6〉. The policy at this position will be the same

regardless of whether the agent has been in location K or not; thus, it cannot determine at any point

in time whether it should go to K or not since it does not retain knowledge about history.

Given the limitations of memoryless policies, the alternative is to learn history-dependent policies.

The naive approach consists of learning policies over the entire state-action history. However, this is

not practical since histories can grow arbitrarily, and it is difficult to generalize from them (Spaan,

2012). Scalable approaches extend the state of the environment with variables or compact history

representations that make reward Markovian (Whitehead and Lin, 1995). We depict an example of

them below.

Example 2.1.4. To make rewards Markovian from the agent’s perspective in the Coffee task for

OfficeWorld, the state can be extended with a Boolean variable that indicates whether the agent

has been in location K. Given the instance from Figure 2.3, the policy can determine to visit location

K if the agent has not been there before, and visit location o otherwise.
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Figure 2.4: The agent-environment interaction in a labeled MDP.

In this thesis, we compactly encode history in terms of either (i) the states perceived by the

agent, or (ii) high-level propositional events. For the former, we employ recurrent neural networks

such as DRQNs (see Section 2.1.2). For the latter, we consider the environments to be modeled as

labeled MDPs (Fu and Topcu, 2014; Xu et al., 2020), a type of NMRDP that provides agents with

a set of high-level propositional events observed at the current state. Formally, a labeled MDP is a

tuple 〈S,A, p, r, γ,P, l〉, where:

• S, A, p, r and γ are defined as for NMRDPs;

• P is a finite set of propositions representing high-level events; and

• l : S → 2P is a labeling function mapping states into propositions subsets (or labels).

Figure 2.4 illustrates the agent-environment interaction in labeled MDPs. Unlike MDPs, the agent

observes a label L ∈ 2P generated by the labeling function l at each step.

The purpose of labeled MDPs is to represent history in terms of high-level propositional events.

Given a history ht = 〈s0, a0, . . . , st〉 ∈ (S ×A)
∗ × S, a label trace (or trace, for short) λt =

〈l(s0), . . . , l(st)〉 ∈ (2P)
+

assigns labels to all states in ht. The goal is to find a policy π :

(2P)
+ × S → ∆(A), a mapping from traces-states into probability distributions over actions that

maximizes the expected return. However, this is only possible if label traces are faithful represen-

tations of history; that is, the reward can be written in terms of traces instead of history. Formally,

r(ht, at, st+1) = r(ht+1) = r(λt+1, st+1).

Example 2.1.5. The OfficeWorld tasks in Example 2.1.2 are formalized as labeled MDPs by:

1. Defining the set of propositions as P = {K,B, o, A,B,C,D, ∗}; that is, there is a proposition

for each special location in the grid.

2. Defining the labeling function as a mapping from a location (i.e., a state in OfficeWorld)

into the set of propositions found in that location.

Given the instance from Figure 2.3 and the history h = 〈〈4, 6〉, left, 〈3, 6〉, right, 〈4, 6〉, down, 〈4, 5〉,
down, 〈4, 4〉〉, the resulting trace is λ = 〈{}, {K}, {}, {}, {o}〉.

Even though histories are expressed in terms of label traces in labeled MDPs, it is still impractical

to learn policies over full traces. However, traces can be compactly represented using temporally

abstract structures, such as linear temporal logic (e.g., Bacchus et al., 1996; Toro Icarte et al., 2018b),

and finite-state machines (e.g., Toro Icarte et al., 2018a, 2022). This thesis focuses on a specific case

of finite-state machines called reward machines, described in Section 2.1.5.
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Figure 2.5: Reward machine for the Coffee task in the OfficeWorld domain.

2.1.5 Reward Machines

Reward machines (RMs; Toro Icarte et al., 2018a, 2022) are finite-state machines that represent

reward functions in terms of high-level propositional events. Formally, a reward machine is a tuple

M = 〈U ,P, δ, r, u0〉, where:

• U is a finite set of states;

• P is a finite set of propositions that constitutes the alphabet of the reward machine;

• δ : U × 2P → U is the deterministic state-transition function, which takes an RM state and a

subset of propositions (or label) and returns an RM state;

• r : U × 2P → R is the reward-transition function, which outputs the reward associated with a

state-label pair; and

• u0 ∈ U is the initial state of the RM.

The definition allows for arbitrary propositional logic formulas over P on the transitions. To verify

if a formula is satisfied by a label L ∈ 2P , L is used as a truth assignment where propositions in L
are true, and false otherwise; for example, {K, o} |= K ∧ o ∧ ¬∗.

Toro Icarte et al. (2018a, 2022) generalize these RMs by redefining the reward-transition function

such that a reward function is returned instead of a scalar; formally, given an MDP, the reward-

transition function becomes r : U × 2P → [S ×A× S → R]. In this thesis, we build upon the more

specific version defined above.

Example 2.1.6. Figure 2.5 illustrates the RM for the Coffee task in OfficeWorld. The edges

are labeled by 〈ϕ, r〉 pairs, where ϕ is a propositional logic formula over P = {K,B, o, A,B,C,D,
∗} and r is a reward. The formula K ∧ ¬o ∧ ¬∗ accounts for 32 proposition sets, each the union

of {K} with a subset of {B, A,B,C,D}. The RM covers both (i) the case where K and o share

the same location (i.e. {K, o} is observable) through a direct path from u0 to u3, and (ii) the case

where K and o are in different locations through the path via u1. The state-transition function is

deterministic since no label can simultaneously satisfy transitions to two different states.
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Figure 2.6: The agent-environment interaction in a labeled MDP with a reward machine.

Figure 2.6 shows the agent-environment interaction in labeled MDPs when an RM is used. The

reward structure is revealed to the agent through the RM during the interaction. Starting from

the RM’s initial state, the agent moves through the RM according to the state-transition function

and receives rewards according to the reward-transition function. Given an RM M and a trace

λ = 〈L0, . . . ,Ln〉, an RM traversal M(λ) = 〈v0, v1, . . . , vn+1〉 is a unique sequence of RM states

such that:

1. v0 = u0, and

2. δ(vi,Li) = vi+1 for i = 0, . . . , n.

Example 2.1.7. Given the RM in Figure 2.5 and the trace λ = 〈{}, {K}, {}, {}, {o}〉, the resulting

traversal is 〈u0, u0, u1, u1, u1, u3〉.

Reward machines are compact representations of traces. The RM states correspond to different

stages in completing a task; indeed, as shown in the RM traversal, a trace can be expressed as a

sequence of RM states. For instance, the state u1 in Figure 2.5 indicates that the agent has been

to location K and ignores everything else in the trace. Therefore, rewards become Markovian if

defined over S × U ; that is, if the labeled MDP states S are augmented with the task completion

information provided by the RM states U .

Given that the reward is Markovian over S × U , an agent can simply learn a policy over S × U
using standard RL methods, such as Q-learning. However, RMs provide agents with a task’s reward

structure, which enables task decomposition and, hence, increased sample-efficiency. In what follows,

we describe some of these methods.

Q-learning for Reward Machines (QRM)

Q-learning for reward machines (QRM; Toro Icarte et al., 2018a) learns an action-value function

over S × U . The value function is distributed among the states in the RM; that is, QRM maintains

an action-value function for each state in the RM. Given an experience 〈st, at, st+1,Lt+1〉, QRM

updates the action-value function qu : S ×A → R of an RM state u ∈ U using the following rule:

qu(st, at) = qu(st, at) + α

(
r(u,Lt+1) + γ max

a′∈A
qu′(st+1, a

′)− qu(st, at)

)
, (2.1)

where u′ = δ(u,Lt+1) is the next RM state. Even though the action-value functions are distributed,

these are coupled through the target in the update rule; that is, the action-value function of an RM
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state u depends on that of the next RM state u′, hence QRM effectively learns a value function over

S×U . QRM performs off-policy learning by applying the update above on all states in the RM given

a single experience. In the tabular case, QRM converges to an optimal policy in the limit (Toro

Icarte et al., 2018a, Theorem 4.1).

QRM is extensible to the function approximation case by approximating the action-value func-

tions using DQNs. For each RM state u ∈ U , there is a network with parameters θu and a target

network with parameters θ−u . The DQN for a state u ∈ U is updated using the following loss

function:

E〈st,at,st+1,Lt+1〉∼U(D)

[(
r(u,Lt+1) + γ max

a′∈A
qu′(st+1, a

′;θ−u′)− qu(st, at;θu)

)2
]
,

where u′ = δ(u,Lt+1) is the next RM state, and D stores the experiences 〈st, at, st+1,Lt+1〉 observed

during the agent-environment interaction (i.e., experiences are shared by the DQNs).

Counterfactual Experiences for Reward Machines (CRM)

Counterfactual experiences for reward machines (CRM; Toro Icarte et al., 2022) is a generalization

of the idea underlying QRM: use the experiences generated by the policy on the current RM state to

update the policy on other RM states. Formally, there is a single policy π : S×U → ∆(A) conditioned

on the current environment state and the current RM state. Given an experience 〈st, at, st+1,Lt+1〉,
a set of synthetic experiences is created by counterfactual reasoning, i.e. simulating that Lt+1 was

observed in each of the states of the RM:

{〈st, u, at, r(u,Lt+1), st+1, δ(u,Lt+1)〉 | u ∈ U} .

These synthetic experiences can generally be used by off-policy learning methods. We describe how

this is done in Q-learning and DQNs.

CRM with Q-learning maintains a single action-value function q : S × A × U → R. Each

synthetic experience 〈st, u, at, rt+1, st+1, u
′〉 is used to update the action-value function using the

following rule:

q(st, at, u) = q(st, at, u) + α

(
rt+1 + γ max

a′∈A
q(st+1, a

′, u′)− q(st, at, u)

)
.

In the tabular case, like QRM, CRM with Q-learning converges to an optimal policy in the limit (Toro

Icarte et al., 2022, Theorem 4.1).

Akin to QRM, CRM is extensible to the function approximation case by approximating the value

function through a DQN with parameters θ and a target DQN with parameters θ−. After each step,

the set of experiences mentioned above is pushed to the replay buffer D. The DQN is updated using

the following loss function:

E〈st,u,at,rt+1,st+1,u′〉∼U(D)

[(
rt+1 + γ max

a′∈A
q(st+1, a

′, u′;θ−)− q(st, at, u;θ)

)2
]
.

CRM with Q-learning differs from QRM in that a single action-value function is maintained,
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which makes the implementation easier and more efficient, specially in the function approximation

case as noted by Toro Icarte et al. (2022).

2.2 Inductive Learning of Answer Set Programs

Inductive logic programming (Muggleton, 1991) is a learning paradigm where the goal is to learn

a hypothesis in the form of a logic program, which together with a given background knowledge

explains a set of examples. In the following sections, we describe answer set programming (Sec-

tion 2.2.1), the logic programming language we employ, and the ILASP system for learning answer

set programs (Section 2.2.2).

2.2.1 Answer Set Programming

Answer set programming (ASP; Gelfond and Lifschitz, 1988) is a declarative programming language

for knowledge representation and reasoning. An ASP problem is expressed in a logical format and

the models (called answer sets) of its representation provide the solutions to that problem. In the

paragraphs below, we describe the main ASP concepts used in the thesis based on the materials by

Law (2015).

Syntax

An atom is an expression of the form p(t1, . . . , tn) where p is a predicate symbol of arity n and

t1, . . . , tn are terms. If n = 0, we omit the parentheses. In this thesis, a term can be either a

variable or a constant. By convention, variables are denoted using upper case (e.g., X or Y), while

constants are written in lower case (e.g., coffee or mail). An atom is said to be ground if none

of its terms is a variable. A literal is an atom a or its negation not a. The not symbol is called

negation as failure (Clark, 1977).

An ASP program P is a set of rules. In this thesis, we assume that this set is formed by normal

rules, choice rules, and constraints:

• A normal rule is of the form h : - b1, . . . , bn, where h is an atom constituting the head of the

rule, and b1, . . . , bn are literals that constitute the body of the rule. A normal rule with an

empty body is a fact.

• A choice rule is of the form lb{h1, . . . , hm}ub : - b1, . . . , bn. The head is lb{h1, . . . , hm}ub, where

lb and ub are integers such that lb ≤ ub and h1, . . . , hm are atoms. If unspecified, lb and ub

are 0 and ∞, respectively. The body is constituted by literals b1, . . . , bn.

• A constraint is a normal rule with an empty head, i.e. of the form : - b1, . . . , bn.

Given a rule R, we denote by body(R) the set of literals forming the body of R, body+(R) the set of

all positive literals in the body of R, and body−(R) the set of all negative literals in the body of R.

Semantics

The Herbrand base of a program P is the set of all ground atoms that can be made from predicates

and constants that appear in P . A Herbrand interpretation of a program P assigns every atom in
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the Herbrand base of P to either true or false. It is often denoted as the set of atoms assigned to

true. The grounding of a program P , denoted ground(P ), results from replacing each rule in the

program with every ground instance of the rule. A Herbrand interpretation I satisfies a ground rule

R if either the body is not satisfied by I or the head is satisfied by I. The body of a ground rule

R is satisfied by a Herbrand interpretation I if and only if body+(R) ⊆ I and body−(R) ∩ I = ∅,
whereas the head is satisfied differently depending on the type of rule:

• The head h of a ground normal rule is satisfied by I if h ∈ I.

• The head of a ground choice rule is satisfied by I if and only if the number of satisfied atoms

in the head is between lb and ub (both included), i.e., lb ≤ |I ∩ {h1, . . . , hm}| ≤ ub.

• The head of a ground constraint is unsatisfiable.

For any program P , a Herbrand interpretation I is a Herbrand model if every rule in ground(P )

is satisfied by I. A Herbrand model M of a program P is minimal if and only if there is no strict

subset M ′ of M such that M ′ is also a Herbrand model of P .

Example 2.2.1. The following shows an ASP program P consisting of two facts and two normal

rules, and the resulting ground program ground(P ):

P =


p(X) : - not q(X), r(X).

q(X) : - not p(X), r(X).

r(1).

r(2).

 , ground(P ) =



p(1) : - not q(1), r(1).

p(2) : - not q(2), r(2).

q(1) : - not p(1), r(1).

q(2) : - not p(2), r(2).

r(1).

r(2).


.

The Herbrand base is {p(1), p(2), q(1), q(2), r(1), r(2)}. The Herbrand interpretation I1 = {p(1),

q(2), r(1), r(2)} is a Herbrand model of P since all rules in ground(P ) are satisfied; in contrast,

I2 = {q(1), r(1), r(2)} is not a model of P since the first rule in ground(P ) is not satisfied.

The reduct P I of a ground program P with respect to a Herbrand interpretation I is built in

four steps (Law et al., 2015b):3

1. Replace the heads of all constraints with ⊥.

2. For each choice rule R:

• if its head is not satisfied by I, replace its head with ⊥, or

• if its head is satisfied by I then remove R and for each atom h in the head of R such that

h ∈ I, add the rule h : - body(R).

3. Remove any rule R such that the body of R contains the negation of an atom in I.

4. Remove all negative literals from the body of any remaining rules.

3This is a non-standard form of building the reduct, but it is proven to be equivalent (Law et al., 2015b) to the
standard definitions (e.g., Calimeri et al., 2020).
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The reduct is always a ground program consisting only of definite rules, i.e. rules of the form

h : - b1, . . . , bn where b1, . . . , bn are atoms. For any program that consists only of definite rules, there

is a unique minimal Herbrand model; hence, the reduct always has a unique minimal Herbrand

model. A Herbrand interpretation I is an answer set of P if and only if I is the minimal Herbrand

model of the reduct P I .

Example 2.2.2. Given the program P in Example 2.2.1, the Herbrand interpretation I1 = {p(1),

q(2), r(1), r(2)} is an answer set of P . To obtain the answer set, the reduct of the ground program

with respect to I1 is first computed:

ground(P )I1 =


p(1) : - r(1).

q(2) : - r(2).

r(1).

r(2).

 .

The unique minimal model of the reduct is {p(1), q(2), r(1), r(2)}, which matches I1; thus, I1 is an

answer set. The following three Herbrand interpretations are the other answer sets of P :

{p(1), p(2), r(1), r(2)} , {p(2), q(1), r(1), r(2)} , {q(1), q(2), r(1), r(2)} .

The Herbrand interpretation I2 = {p(1), p(2), q(1), q(2), r(1), r(2)} is not an answer set since the

subset {r(1), r(2)} is the minimal model of the reduct ground(P )I2 = {r(1). r(2).}.

An ASP program P is stratified (Sergot, 2017) when there is a partition P = P0 ∪ P1 ∪ · · · ∪ Pn
such that (i) Pi and Pj are disjoint for all i 6= j, (ii) the definition of every predicate p (all clauses

with p in the head) is contained in one of the partitions Pi, and (iii) for each 1 ≤ i ≤ n:

• if a predicate occurs positively in a clause of Pi then its definition is contained within
⋃
j≤i Pj ,

and

• if a predicate occurs negatively in a clause of Pi then its definition is contained within
⋃
j<i Pj .

If an ASP program is stratified, then it has a unique answer set (Gelfond and Lifschitz, 1988,

Corollary 1).

2.2.2 ILASP

ILASP (Inductive Learning of Answer Set Programs; Law et al., 2015a) is an inductive logic pro-

gramming system for learning ASP programs from partial answer sets.

A context-dependent partial interpretation (CDPI; Law et al., 2016) is a pair 〈〈einc, eexc〉, ectx〉,
where:

• 〈einc, eexc〉 is a pair of sets of ground atoms, called a partial interpretation. We refer to einc

and eexc as the inclusions and exclusions respectively.

• ectx is an ASP program, called a context.

A program P accepts a CDPI 〈〈einc, eexc〉, ectx〉 if and only if there is an answer set A of P ∪ ectx

such that einc ⊆ A and eexc ∩A = ∅.
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An ILASP task (Law et al., 2016) is a tuple T = 〈B,SM, 〈E+, E−〉〉 where:4

• B is the ASP background knowledge, which describes a set of known concepts before learning;

• SM is the set of ASP rules allowed in the hypotheses (i.e., learned programs), usually charac-

terized by a set of predicate schemas M (called mode declarations); and

• E+ and E− are sets of CDPIs called, respectively, the positive and negative examples.

A hypothesis H ⊆ SM is an inductive solution of T if and only if:

1. ∀e ∈ E+, B ∪H accepts e, and

2. ∀e ∈ E−, B ∪H does not accept e.

Example 2.2.3. Let T = 〈B,SM, 〈E+, E−〉〉 be an ILASP task where:

B = {p : - not q.} ,

E+ =


〈〈{p} , {q}〉 , {r.}〉 ,
〈〈{q} , {p}〉 , {r.}〉 ,
〈〈{p} , {q}〉 , ∅〉

 ,

SM =

{
q. q : - not p.

q : - p, r. q : - not p, r.

}
,

E− =
{
〈〈{q} , {p}〉 , ∅〉

}
.

A candidate hypothesis is H = {q : - not p, r.}. Now we have to check whether the positive examples

are accepted, and the negative is not:

• For the positive examples 〈〈{p} , {q}〉 , {r.}〉 and 〈〈{q} , {p}〉 , {r.}〉, the program B ∪ H ∪ {r.}
has two answer sets A1 = {p, r} and A2 = {q, r}. Then, B ∪ H ∪ {r.} accepts the first

example because {p} ⊆ A1 and {q} ∩ A1 = ∅, and also the second one because {q} ⊆ A2 and

{p} ∩A2 = ∅.

• For the positive example 〈〈{p} , {q}〉 , ∅〉 and the negative example 〈〈{q} , {p}〉 , ∅〉, the program

B ∪ H ∪ ∅ has a single answer set A′1 = {p}. Then, B ∪ H ∪ ∅ accepts the first example

since {p} ⊆ A′1 and {q} ∩ A′1 = ∅, and does not accept the second one since {q} 6⊆ A′1 (also,

{p} ∩A′1 6= ∅).

Therefore, H is an inductive solution of T . In contrast, H′ = {q.} is not an inductive solution. For

instance, given the positive example 〈〈{p} , {q}〉 , ∅〉, the program B ∪H′ ∪ ∅ has a single answer set,

A′′1 = {q}. Then, this program does not accept the example because {p} 6⊆ A′′1 (also, {q} ∩ A′′1 6= ∅),

which causes H′ not to be an inductive solution.

ILASP, like other inductive logic programming systems, biases the search for inductive solutions

towards those with the fewest literals. An inductive solution is called optimal if there is no inductive

solution with fewer literals.

4The ILASP task definition given here captures the subset of ILASP used in this thesis.
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Reward Machines
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Chapter 3

Formalism of Reward Machines

Two aspects limit the applicability and benefits of reward machines. First, handcrafting a reward

machine for any given task is often infeasible in practice. Second, despite exploiting task decom-

position to improve sample efficiency, the QRM algorithm has two shortcomings: (i) it operates

at a single timescale, making subtask policies hardly reusable since they are interdependent, and

(ii) it starts updating action values only after a non-zero reward transition is satisfied, becoming less

effective when the reward machine rarely emits non-zero rewards or high-level propositional events

are infrequent.

In this part of the thesis, we propose mechanisms for addressing these previous limitations. We

devise a method for learning RMs from traces, hence alleviating the need for human intervention. To

speed up the learning process, we propose a symmetry breaking mechanism that removes equivalent

RMs from the solution space. On the exploitation side, we introduce two methods for making the

reward signal denser to improve sample efficiency. On the one hand, we present an HRL method

for exploiting RMs at multiple timescales, i.e. dividing the task into simpler independently solvable

subtasks. These subtasks are reusable, even within the same RM since they do not depend on the

global task. On the other hand, we describe a reward shaping mechanism for QRM that provides

additional rewards based on the RM’s structure. We ensemble learning and exploitation through an

algorithm that interleaves them: a new RM is learned when the current one does not cover a trace

observed by the agent. The algorithm is guaranteed to eventually find a minimal RM (i.e., with the

fewest states) that captures the observable traces in the environment.

In this chapter, we formally define the type of tasks (Section 3.1) and reward machines (Sec-

tion 3.2) considered throughout this part of the thesis. Next, we introduce an ASP representation

for reward machines (Section 3.3). Finally, we devise a symmetry breaking mechanism (Section 3.4)

that enforces a unique indexing of the states and edges in the reward machines.

3.1 Tasks

In this section, we formalize the tasks tackled in this thesis. We consider episodic tasks, where

termination is determined by two possible situations: the achievement of the task’s goal, or the

unfeasibility of achieving the goal (i.e., reaching a dead-end). In what follows, we provide a self-

contained redefinition of the labeled MDPs introduced in Section 2.1.4 to allow for these two types

27
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Figure 3.1: The agent-environment interaction in a labeled MDP with a termination function.

of termination.

Definition 3.1.1 (Labeled MDP). A labeled MDP is a tuple 〈S,A, p, r, γ,P, l, τ〉 where:

• S, A, p, and γ are defined as for MDPs;

• r : (S ×A)
+ × S → R is the reward function, which maps histories into rewards;

• P is a finite set of propositions representing high-level events;

• l : S → 2P is a labeling function mapping states into proposition subsets (or labels); and

• τ : (S ×A)
∗ × S → {⊥,>} × {⊥,>} is the termination function, which maps histories into

Boolean-pairs 〈T,G〉 where T indicates whether the history is terminal (i.e., the episode is

completed) and G indicates whether the goal is achieved. If T is true and G is not, it means

a dead-end has been reached.

Both the reward function and the termination function are non-Markovian since they are defined

over histories. However, as shown in Section 2.1.4, these functions can be written in terms of

label traces instead of histories. In the case of the termination function, given the history ht, the

corresponding trace λt and the state st at time t, the equivalence τ(ht) = τ(λt, st) holds.

Figure 3.1 illustrates the agent-environment interaction in the labeled MDPs considered in this

thesis. At time t, the trace is λt ∈ (2P)
+

, and the agent observes a tuple st = 〈st, sTt , sGt 〉, where

st ∈ S is the state and 〈sTt , sGt 〉 = τ(λt, st) is the termination information, with sTt and sGt indicating

whether or not the history 〈λt, st〉 is terminal or a goal, respectively. The agent also observes a label

Lt = l(st). If the history is non-terminal, the agent runs action at ∈ A, and the environment

transitions to state st+1 ∼ p(· | st, at). The agent then observes tuple st+1 and label Lt+1, extends

the trace as λt+1 = λt ⊕ Lt+1, and receives reward rt+1 = r(λt+1, st+1).

Given the history ht and the termination information 〈sTt , sGt 〉 at time t, the history is one of the

following:1

1. A goal history hGt if sTt = > ∧ sGt = > (i.e., the goal is achieved).

2. A dead-end history hDt if sTt = > ∧ sGt = ⊥ (i.e., a dead-end is reached).

3. An incomplete history hIt if sTt = ⊥ (i.e., the history is not terminal).

1With a slight abuse of notation, the symbols ⊥ (false) and > (true) are used as both Boolean variables and
Boolean formulas throughout the thesis.
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Analogously, the label trace λt at time t is (i) a goal trace λGt if ht is a goal history, (ii) a dead-end

trace λDt if ht is a dead-end history, and (iii) an incomplete trace λIt if ht is an incomplete history.

Example 3.1.1. The termination in the OfficeWorld tasks (see Example 2.1.2) is defined such

that histories ending on a decoration location are dead-end histories, whereas those completing the

task specification are goal histories. The following table illustrates some example histories and traces

for the Coffee given the grid from Figure 2.3.

Category History Trace

Goal 〈〈4, 6〉, left, 〈3, 6〉, right, 〈4, 6〉, down, 〈4, 5〉, down, 〈4, 4〉〉 〈{}, {K}, {}, {}, {o}〉
Dead-end 〈〈4, 6〉, up, 〈4, 7〉〉 〈{}, {∗}〉
Incomplete 〈〈4, 6〉, left, 〈3, 6〉〉 〈{}, {K}〉

For the remainder of the thesis, we assume the reward is 1 for goal histories and 0 otherwise;

hence, our agents will learn from extremely sparse rewards. The task decomposition provided by

reward machines, as shown throughout the thesis, enables such tasks to be tackled effectively. The

assumption is mainly leveraged for the learning of the reward machines: we will only need to learn

the conditions labeling the edges, but not the rewards. Further details are described in the following

chapters.

Assumption 3.1.1. The reward is 1 for goal histories and 0 otherwise.

3.2 Reward Machines

The reward machines (RMs) in this thesis are different from the original (see Section 2.1.5) in three

regards. First, the state transitions are determined by propositional logic formulas in disjunctive

normal form (DNF). Second, there are two special states aligned with the redefinition of the labeled

MDPs, which respectively denote the task’s goal achievement and the unfeasibility of achieving it

(i.e., reaching a dead-end). Third, the reward-transition function is defined for state pairs instead

of state-label pairs. We redefine the RMs to account for these differences as follows.

Definition 3.2.1 (Reward machine). A reward machine is a tuple M = 〈U ,P, ϕ, r, u0, uA, uR〉,
where:

• U is a finite set of states;

• P is a finite set of propositions that constitutes the alphabet of the reward machine;

• ϕ : U × U → DNFP is the logical transition function such that ϕ(u, u′) denotes the DNF

formula over P to be satisfied to transition from u ∈ U to u′ ∈ U ;

• r : U × U → R is the reward-transition function, which outputs the reward associated with a

state transition;

• u0 ∈ U is the unique initial state;

• uA ∈ U is the unique accepting state, which denotes the task’s goal achievement; and
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• uR ∈ U is the unique rejecting state, which denotes the unfeasibility of achieving the task’s

goal.

Expressing a transition condition ϕ(u, u′) as a DNF formula enables representing multiple edges

between two states u and u′; that is, each disjunct of ϕ(u, u′) labels a different edge between u

and u′. We now introduce the state-transition function of an RM, which determines under what

conditions a transition between two states takes place given a label.

Definition 3.2.2 (State-transition function). The state-transition function δM : U × 2P → U of a

reward machine M is defined in terms of its logical transition function ϕ. Formally,

δM (u,L) =

u′ if L |= ϕ(u, u′);

u if @u′ ∈ U such that L |= ϕ(u, u′).

That is, given a state u ∈ U and a label L ⊆ P, the next state is u′ ∈ U if the associated formula

ϕ(u, u′) is satisfied by L; otherwise, when no formula from u is satisfied by L, the state remains

unchanged.

The state-transition function must behave deterministically ; that is, given a state u ∈ U and a

label L ⊆ P , at most one formula is satisfied. Formally, there do not exist two states u′, u′′ ∈ U
such that L |= ϕ(u, u′),L |= ϕ(u, u′′), and u′ 6= u′′. Determinism is guaranteed when all pairs of

transitions from a given state to two different states are mutually exclusive; that is, a proposition

appears positively on one edge and negatively on another. Next, we make some assumptions about

the definition of the logical transition function and the reward-transition function.

Assumption 3.2.1. The logical transition function ϕ of an RM is such that ϕ(u, u) = ⊥ for all

states u ∈ U .

Assumption 3.2.2. The logical transition function ϕ of an RM is such that ϕ(u, u′) = ⊥ for

u ∈ {uA, uR} and u′ ∈ U .

Assumption 3.2.3. The reward-transition function is r(u, u′) = 1[u 6= uA ∧ u′ = uA] as per As-

sumption 3.1.1; that is, a reward of 1 of one is given for transitions to the accepting state, and it is

0 otherwise.

By Assumption 3.2.1, the state-transition function is such that the state remains unchanged if no

formula to a different state is satisfied by a label; hence, self-loops are labeled ‘o.w.’ (otherwise) in

any figures illustrating RMs. Likewise, the accepting and rejecting states are absorbing (i.e., cannot

be left once reached) by Assumption 3.2.2. In addition, for simplicity, we omit rewards from the

figures since all RMs share the same reward-transition function by Assumption 3.2.3.

Example 3.2.1. Figure 3.2 shows the reward machine for the OfficeWorld’s Coffee task using

our formalism. The RM resembles that in Figure 2.5 except for (i) the states u2 and u3, which

respectively become the rejecting state uR and the accepting state uA, and (ii) the edges are labeled

according to the following logical transition function ϕ:

ϕ(u0, u1) = K ∧ ¬o ∧ ¬∗,

ϕ(u1, uA) = o ∧ ¬∗,

ϕ(u0, uA) = K ∧ o ∧ ¬∗,

ϕ(u1, uR) = ∗.

ϕ(u0, uR) = ∗,
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u0

uAu1 uR

o.w.

o.w.

o.w.

o.w.

K ∧ ¬o ∧ ¬∗ ∗

∗

o ∧ ¬∗

K ∧ o ∧ ¬∗

Figure 3.2: Reward machine for the Coffee task in the OfficeWorld domain using our formalism.

For all absent pairs of states 〈u, u′〉, ϕ(u, u′) = ⊥. The transition function is deterministic because

all pairs of outgoing transitions from a given state to two different states are mutually exclusive; for

instance, the formulas o∧¬∗ and ∗ are mutually exclusive because ∗ appears negatively in the former

and positively in the latter. In this case, there is not more than one edge between each pair of states;

that is, |ϕ(u, u′)| = 1 for all pairs of states.

The RM traversal is the same as that defined in Section 2.1.5 but using the state-transition

function δM instead. We redefine the traversal to account for this change and define what it means

for a trace to be accepted or rejected by an RM.

Definition 3.2.3 (RM traversal). Given an RM M and a trace λ = 〈L0, . . . ,Ln〉, an RM traversal

M(λ) = 〈v0, v1, . . . , vn+1〉 is a unique sequence of RM states such that:

1. v0 = u0, and

2. δM (vi,Li) = vi+1 for i = 0, . . . , n.

An RM M accepts a trace λ if the traversal M(λ) = 〈v0, . . . , vn+1〉 is such that vn+1 = uA (i.e., the

last state in the traversal is the accepting state). Analogously, M rejects λ if vn+1 = uR (i.e., the

last state in the traversal is the rejecting state).

Example 3.2.2. The reward machine M in Figure 3.2 accepts λ1 = 〈{}, {K}, {}, {}, {o}〉, rejects

λ2 = 〈{}, {∗}〉, and does not accept or reject λ3 = 〈{}, {K}〉 since the traversals are M(λ1) = 〈u0,

u0, u1, u1, u1, uA〉, M(λ2) = 〈u0, u0, uR〉 and M(λ3) = 〈u0, u0, u1〉, respectively.

Having established how an RM evaluates (acceptance, rejection, or neither) a trace, we need to

determine whether this evaluation complies with the trace type (goal, dead-end, or incomplete). For

this purpose, we introduce the concept of validity with respect to a trace (i.e., whether the trace

type matches the evaluation of the RM).

Definition 3.2.4 (Validity). Given a trace λ∗, where ∗ ∈ {G,D, I}, a reward machine M is valid

with respect to λ∗ if one of the following holds:

• M accepts λ∗ and ∗ = G (i.e., λ∗ is a goal trace).
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• M rejects λ∗ and ∗ = D (i.e., λ∗ is a dead-end trace).

• M does not accept nor reject λ∗ and ∗ = I (i.e., λ∗ is an incomplete trace).

Validity is crucial to prove the correctness of the ASP encoding of the RMs (see Section 3.3), as

well as to learn RMs (see Chapter 4).

3.3 Representation in Answer Set Programming

In this section, we describe the representation in answer set programming (ASP) of traces (Sec-

tion 3.3.1) and reward machines (Section 3.3.2), and prove its correctness (Section 3.3.3). We also

introduce a rule set for verifying that the represented RM is deterministic (Section 3.3.4).

3.3.1 Traces

Traces are represented in terms of three atoms: prop(p, t) indicates that proposition p ∈ P is

observed at step t, step(t) states that t is a step of the trace, and last(n) indicates that the trace

ends at step n.

Definition 3.3.1 (ASP representation of a trace). Given a trace λ = 〈L0, . . . ,Ln〉, A(λ) denotes

the set of ASP facts that describe it:

A(λ) =

{prop(p, t). | 0 ≤ t ≤ n, p ∈ Lt}∪
{step(t). | 0 ≤ t ≤ n}∪
{last(n).} .

Example 3.3.1. The ASP representation of trace λ = 〈{a}, {}, {b, c}〉 is A(λ) = {prop(a, 0).,

prop(b, 2)., prop(c, 2)., step(0)., step(1)., step(2)., last(2).}.

3.3.2 Reward Machines

We here describe the ASP representation of reward machines. First, we explain the particular rules

that characterize a given RM. Second, we introduce the rules representing how the traversal in any

RM is performed for any trace.

Structure

We introduce two representations of the structure (i.e., states and logic transition function) of a

specific reward machine, each with a different purpose:

• A non-factual representation, where transitions are expressed through rules (Definition 3.3.2),

which is used by the traversal rules introduced later and learned in Chapter 4.

• A factual representation, where transitions are expressed through facts (Definition 3.3.3),

which is used to verify whether the RM complies with structural properties such as determin-

ism (Section 3.3.4).
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We start defining and exemplifying the former, and continue by justifying the need for the latter.

Definition 3.3.2 (Non-factual ASP representation of a reward machine). Given a reward machine

M = 〈U ,P, ϕ, r, u0, uA, uR〉, A(M) = AU (M) ∪ Aϕ(M) denotes the set of ASP rules that describe

it, where:

AU (M) = {state (u) . | u ∈ U}

and

Aϕ(M) =



ed(u, u′, i).

ϕ̄(u, u′, i, T) : - not prop(p1, T), step(T).

...

ϕ̄(u, u′, i, T) : - not prop(pn, T), step(T).

ϕ̄(u, u′, i, T) : - prop(pn+1, T), step(T).

...

ϕ̄(u, u′, i, T) : - prop(pm, T), step(T).

u ∈ U \ {uA, uR},

u′ ∈ U \ {u} ,

1 ≤ i ≤ |ϕ(u, u′)| ,

φi ∈ ϕ(u, u′),

φi = p1 ∧ · · · ∧ pn
∧ ¬pn+1 ∧ · · · ∧ ¬pm



.

The rule set A(M) is formed by a set AU (M) representing the set of states of M , and a set

Aϕ(M) representing the logical transition function of M . The constituent rules are described as

follows:

• Facts state(u) indicate that u is an RM state.

• Facts ed(u, u′, i) indicate that there is a transition from state u to u′ using edge i, where i is

the i-th conjunction in the DNF formula ϕ(u, u′).2

• Normal rules whose head is ϕ̄(u, u′, i, T) state that the transition from state u to state u′ with

edge i does not hold at step T. The body consists of a single (positive or negative) prop(p, T)

literal and an atom step(T) indicating that T is a step.3

Note that ϕ̄ represents the negation of the logical transition function ϕ. The reason for this choice

comes from the fact that learning ϕ̄ instead of ϕ makes the search space smaller, thus speeding up

RM learning (see Chapter 4).

Example 3.3.2. The non-factual ASP representation of the RM in Figure 3.2 is given by:

state(u0). state(u1). state(uA). state(uR).

ed(u0, u1, 1). ed(u0, uA, 1). ed(u0, uR, 1). ed(u1, uA, 1). ed(u1, uR, 1).

ϕ̄(u0, u1, 1, T) : - not prop(K, T), step(T). ϕ̄(u0, u1, 1, T) : - prop(o, T), step(T).

ϕ̄(u0, u1, 1, T) : - prop(∗, T), step(T). ϕ̄(u0, uA, 1, T) : - not prop(K, T), step(T).

ϕ̄(u0, uA, 1, T) : - not prop(o, T), step(T). ϕ̄(u0, uA, 1, T) : - prop(∗, T), step(T).

ϕ̄(u0, uR, 1, T) : - not prop(∗, T), step(T). ϕ̄(u1, uA, 1, T) : - not prop(o, T), step(T).

ϕ̄(u1, uA, 1, T) : - prop(∗, T), step(T). ϕ̄(u1, uR, 1, T) : - not prop(∗, T), step(T).


.

2Remember each conjunction in the DNF formula ϕ(u, u′) represents a different edge between states u and u′.
3Variables are represented using upper case letters, which is the case of steps T here.
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The non-factual representation introduced above represents the formulas labeling the edges as

rules; however, consequently, we cannot easily verify structural properties (represented as con-

straints) over them. To address this problem, we introduce the factual representation, which results

from mapping the ϕ̄ rules into facts. Verifying structural properties of the RM through constraints

over facts is more amenable than doing so over variable-dependent rules (e.g., the ϕ̄ rules depend

on the time variable T). We define the factual representation of an RM and exemplify it below.

Definition 3.3.3 (Factual ASP representation of a reward machine). Given the ASP representation

A(M) of a reward machine M , the factual ASP representation AF (M) of M is the result of mapping

the ϕ̄ rules into pos(u, u′, i, p) and neg(u, u′, i, p) facts expressing that proposition p appears positively

(resp. negatively) in the edge i from state u to state u′. Formally,

AF (M) =



state(u). state(u).

ed(u, u′, i). ed(u, u′, i).

pos(u, u′, i, p1). ϕ̄(u, u′, i, T) : - not prop(p1, T), step(T).
...

...

pos(u, u′, i, pn). ϕ̄(u, u′, i, T) : - not prop(pn, T), step(T).

neg(u, u′, i, pn+1). ϕ̄(u, u′, i, T) : - prop(pn+1, T), step(T).
...

...

neg(u, u′, i, pm). ϕ̄(u, u′, i, T) : - prop(pm, T), step(T).



,

where the rules on the right hand side are those within A(M).

Example 3.3.3. The following rules constitute the factual ASP representation built from the rule

set in Example 3.3.2:

state(u0). state(u1). state(uA). state(uR).

ed(u0, u1, 1). ed(u0, uA, 1). ed(u0, uR, 1). ed(u1, uA, 1). ed(u1, uR, 1).

pos(u0, u1, 1,K). neg(u0, u1, 1, o).

neg(u0, u1, 1, ∗). pos(u0, uA, 1,K).

pos(u0, uA, 1, o). neg(u0, uA, 1, ∗).
pos(u0, uR, 1, ∗). pos(u1, uA, 1, o).

neg(u1, uA, 1, ∗). pos(u1, uR, 1, ∗).


.

The factual representation is convenient to verify structural properties, such as determinism (Sec-

tion 3.3.4) and the compliance with a canonical indexing of states and edges (Section 3.4). Never-

theless, the non-factual representation is the one learned later (see Chapter 4) since it requires less

grounding and sets the foundations for representing more complex FSMs in the future (see Chap-

ter 10). As detailed later, our algorithm will learn a non-factual representation and map it to the

factual one to verify the candidate RM properties. Since the non-factual representation is our choice

for learning, the rules modeling RM traversals introduced next are defined over it.

General Rules

To check whether an RM accepts or rejects a trace, it is necessary to reason about how traces

traverse RMs. For this purpose, we introduce a set of rules R = Rϕ ∪ Rδ ∪ Rst defined over the
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non-factual ASP representation of an RM. The subsets Rϕ and Rδ define the rules related to the

state-transition function:

• The first rule in Rϕ defines the logical transition function ϕ in terms of its negation ϕ̄ and ed

atoms. The second rule indicates that an outgoing transition from state X is taken at step T.

Rϕ =

{
ϕ(X, Y, E, T) : - not ϕ̄(X, Y, E, T), ed(X, Y, E), step(T).

out-ϕ(X, T) : -ϕ(X, , , T).

}

• The rules in Rδ define the state-transition function δ in terms of ϕ as per Definition 3.2.2.

The first rule states that the transition from X to Y at step T is active if the formula in an

outgoing transition to Y is satisfied at that step. The second rule indicates that the transition

from state X to itself at step T is active if no outgoing transition is active at that step.

Rδ =

{
δ(X, Y, T) : -ϕ(X, Y, , T).

δ(X, X, T) : - not out-ϕ(X, T), state(X), step(T).

}

The subset Rst is used to define the RM traversal of the trace (that is, the sequence of visited

RM states), and the criteria for accepting or rejecting a trace. The st(t, u) atoms indicate that a

trace is in state u at step t. The first rule defines that the agent is in u0 at step 0. The second rule

determines that at step T+1 the agent will be in state Y if it is in state X at step T and a transition

between them is active at that step. The third (resp. fourth) rule indicates that the trace is accepted

(resp. rejected) if the state at the trace’s last step is uA (resp. uR).

Rst =


st(0, u0).

st(T+1, Y) : - st(T, X), δ(X, Y, T).

accept : - last(T), st(T+1, uA).

reject : - last(T), st(T+1, uR).


3.3.3 Proof of Correctness

We prove the correctness of the ASP representation in the following lines. The non-factual repre-

sentation of the RMs is employed; indeed, the previously introduced traversal rules are defined over

this representation. The following result is crucial to prove the correctness of the RM learning task

introduced in Chapter 4.

Proposition 3.3.1 (Correctness of the ASP encoding). Given a finite trace λ∗, where ∗ ∈ {G,D, I},
and a reward machine M that is valid with respect to λ∗, the program P = A(M) ∪ R ∪ A(λ∗) has

a unique answer set A and (i) accept ∈ A if and only if ∗ = G, and (ii) reject ∈ A if and only if

∗ = D.

Proof. First, we prove that the program P = A(M) ∪R ∪ A(λ∗), where R = Rϕ ∪Rδ ∪Rst, has a

unique answer set. If P is stratified then it has a unique answer set (see Section 2.2.1); hence, we

prove that P is stratified. The program can be partitioned as P = P0 ∪ P1 ∪ P2 ∪ P3, where

P0 = A(λ∗), P1 = A(M), P2 = Rϕ, P3 = Rδ ∪Rst.
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P0

prop
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P1

ed

ϕ̄
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P2
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ϕ
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δ
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accept
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Figure 3.3: Predicate dependencies in the program of Proposition 3.3.1, where predicates are grouped
by the partitions used in the proof. Dashed edges x → y denote that y occurs negatively in some
definition of x, whereas solid edges denote that y only occurs positively in the definitions of x.

Figure 3.3 graphically proves that this partitioning complies with the definition of a stratified pro-

gram. Predicates are grouped into disjoint partitions and connected such that an edge x→ y denotes

that either (i) y occurs negatively in some definition of x, or (ii) y only occurs positively in the def-

initions of x. Case (i) is illustrated with a dashed line, whereas (ii) is illustrated with a solid line.

In compliance with the definition of a stratified program, dashed lines always point to predicates in

partitions with a strictly lower index, while solid lines always point to predicates within the same

partition or lower-indexed partitions.

The unique answer set is A = A0 ∪A1 ∪A2 ∪A3, where Ai corresponds to partition Pi:

A0 = {prop(p, t). | p ∈ λ∗[t], 0 ≤ t ≤ n} ∪ {step(t). | 0 ≤ t ≤ n} ∪ {last(n).} ,

A1 =

{state(u). | u ∈ U}∪
{ed(u, u′, i). | u, u′ ∈ U , 1 ≤ i ≤ |ϕ(u, u′)|} ∪
{ϕ̄(u, u′, i, t). | u, u′ ∈ U , φi ∈ ϕ(u, u′), 0 ≤ t ≤ n, λ∗[t] 6|= φi} ,

A2 =
{ϕ(u, u′, i, t). | u, u′ ∈ U , φi ∈ ϕ(u, u′), 0 ≤ t ≤ n, λ∗[t] |= φi}∪
{out-ϕ(u, t). | u ∈ U , 0 ≤ t ≤ n, ∃u′ ∈ U s.t. λ∗[t] |= ϕ(u, u′)} ,

A3 =

{δ(u, u′, t). | u, u′ ∈ U , 0 ≤ t ≤ n, λ∗[t] |= ϕ(u, u′)}∪
{δ(u, u, t). | u ∈ U , 0 ≤ t ≤ n, @u′ ∈ U s.t. λ∗[t] |= ϕ(u, u′)}∪{
st(0, u0).

}
∪

{st(t, u). | 1 ≤ t ≤ n+ 1, u = M(λ∗)[t]}∪{
accept. |M(λ∗)[n+ 1] = uA

}
∪{

reject. |M(λ∗)[n+ 1] = uR
}
.

We now prove that accept ∈ A if and only if ∗ = G (i.e., the trace achieves the goal). If ∗ = G

then, since the RM is valid with respect to λ∗ (see Definition 3.2.4), the RM traversal M(λ∗) finishes

in the accepting state uA; that is, M(λ∗)[n+ 1] = uA. This holds if and only if accept ∈ A.
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The proof showing that reject ∈ A if and only if ∗ = D (i.e., the trace reaches a dead-end)

is similar to the previous one. If ∗ = D then, since the RM is valid with respect to λ∗, the RM

traversal M(λ∗) finishes in the rejecting state uR; that is, M(λ∗)[n+ 1] = uR. This holds if and

only if reject ∈ A.

3.3.4 Determinism

The state-transition function δM of a reward machine M must be deterministic, as described in

Section 3.2. In our framework, δM is deterministic if the logical transition function ϕ it builds

upon is deterministic, which is guaranteed when the formulas labeling edges from a given state to

two different states are mutually exclusive (i.e., a proposition appears positively in one formula and

negatively in the other). Determinism ensures that each trace is mapped into a single traversal.

Indeed, the algorithms we consider for exploiting RMs (see Section 2.1.5 and Chapter 4) do not

model uncertainty over the current RM state; namely, they assume RMs to be perfect high-level

abstractions of the state-action histories and, therefore, need to know the exact current RM state

to determine the best action to perform.

The ASP representation of a reward machine (Section 3.3.2) encodes the logic transition func-

tion ϕ and is correct under the assumption that ϕ is deterministic (Section 3.3.3); otherwise, as

mentioned above, there could be multiple traversals for a given trace, which could lead to simulta-

neous acceptance and rejection. It is thus imperative to have rules that verify whether an RM is

deterministic or not.

The set of rules below verifies whether an RM is deterministic by encoding the mutual exclusivity

condition described before. These rules are defined over the factual ASP representation of the RMs

(see Definition 3.3.3) since it enables checking whether a proposition appears positively or negatively

in a given edge. The mutex(u, v, e, v′, e′) atoms indicate that the formula on the edge from u to v

with index e is mutually exclusive with that on the edge from u to v′ with index e′. The first

and second rules specify that two outgoing edges from state X to two different states (Y and Z) are

mutually exclusive if a proposition P appears positively in one edge and negatively in the other.4

The third rule enforces mutual exclusivity between the edges from a given state X to two different

states Y and Z. 
mutex(X, Y, EY, Z, EZ) : - pos(X, Y, EY, P), neg(X, Z, EZ, P), Y<Z.

mutex(X, Y, EY, Z, EZ) : - neg(X, Y, EY, P), pos(X, Z, EZ, P), Y<Z.

: - not mutex(X, Y, EY, Z, EZ), ed(X, Y, EY), ed(X, Z, EZ), Y<Z.


These rules are enforced during the learning of RMs to guarantee that the resulting RMs are

deterministic. Further details are provided in Chapter 4.

3.4 Symmetry Breaking

A reward machine can be easily transformed into equivalent (or symmetric) reward machines. There

are different types of symmetries. First, any two states except for u0, uA and uR are interchangeable;

4The comparison Y<Z is done instead of Y!=Z for efficiency. Both comparisons are equivalent in this context;
however, the former imposes a lexicographical order to evaluate the rules and thus avoids reevaluating the expression
when Y and Z are interchanged.



38 CHAPTER 3. FORMALISM OF REWARD MACHINES
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A ∧ ¬∗

B ∧ ¬∗
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D ∧ ¬∗

∗ ∗

∗

∗

(a) VisitABCD
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Figure 3.4: Minimal reward machines for two OfficeWorld tasks. Self-transitions, and transitions
to the rejecting state uR in (b) are omitted for simplicity. The shaded states can be interchanged
in the absence of symmetry breaking.

for example, Figure 3.4 shows two RMs whose states u1, u2 and u3 can be used interchangeably.

Second, there can also be symmetries in the indexing of the edges; namely, the edges in the ASP

representation of an RM can be arbitrarily indexed using any integer number. For instance, if the

edge indices can be within {1, 2}, an alternative representation to that in Example 3.3.2 of the RM

for Coffee (see Figure 3.2) is:

state(u0). state(u1). state(uA). state(uR).

ed(u0, u1, 2). ed(u0, uA, 1). ed(u0, uR, 2). ed(u1, uA, 1). ed(u1, uR, 2).

ϕ̄(u0, u1, 2, T) : - not prop(K, T), step(T). ϕ̄(u0, u1, 2, T) : - prop(o, T), step(T).

ϕ̄(u0, u1, 2, T) : - prop(∗, T), step(T). ϕ̄(u0, uA, 1, T) : - not prop(K, T), step(T).

ϕ̄(u0, uA, 1, T) : - not prop(o, T), step(T). ϕ̄(u0, uA, 1, T) : - prop(∗, T), step(T).

ϕ̄(u0, uR, 2, T) : - not prop(∗, T), step(T). ϕ̄(u1, uA, 1, T) : - not prop(o, T), step(T).

ϕ̄(u1, uA, 1, T) : - prop(∗, T), step(T). ϕ̄(u1, uR, 2, T) : - not prop(∗, T), step(T).


.

Third, and finally, the indices of two edges between the same pair of states can also be interchanged.

We here describe a symmetry breaking mechanism that imposes a unique assignment of state and

edge indices given a labeling of the RM edges. We formalize the mechanism using a class of labeled

directed graphs that subsumes RMs (Section 3.4.1), and encode it as a satisfiability (SAT) formula

and formally prove several of its properties (Section 3.4.2). Finally, we show how the mechanism

is applicable to RMs and propose two ASP encodings (Section 3.4.3) to avoid considering multiple

symmetric RMs during learning (see Chapter 4), hence speeding up the process.



3.4. SYMMETRY BREAKING 39

3.4.1 Graph Indexing

We propose a symmetry breaking mechanism for a particular class of labeled directed graphs. Let

L = {l1, . . . , lk} be a set of labels, and let G = 〈V , E〉 be a labeled directed graph with a set of nodes

V = {v1, . . . , vn} and a set of edges E . Each edge in E is of the form 〈u, v, L〉, where u, v ∈ V are the

two connected nodes, and L ⊆ L is a subset of labels. For each node u ∈ V , let Eo(u) = {〈v, w, L〉 ∈
E | u = v} be the set of outgoing labeled edges from u, and let E i(u) = {〈v, w, L〉 ∈ E | u = w} be

the set of incoming labeled edges.

We define a class G of labeled directed graphs by imposing the following three assumptions:

Assumption 3.4.1. The node v1 is a designated start node.

Assumption 3.4.2. Each node u ∈ V \ {v1} is reachable on a directed path from v1.

Assumption 3.4.3. Outgoing label sets from each node are unique, i.e. for each u ∈ V and label

set L ⊆ L there is at most one edge 〈u, v, L〉 ∈ Eo(u).

As a consequence of Assumption 3.4.2, it holds that |E i(u)| ≥ 1 for each u ∈ V \ {v1}.

Example 3.4.1. The following figure is a labeled directed graph G = 〈V , E〉 that belongs to class G,

where V = {v1, . . . , v5}. The set of labels is L = {a, b, c, d, e, f}.

v1

v5

v4

v3 v2

{a, f}

{b, e}

{a, b}

{b}

{a}

{c}

{d}

Label Set Ordering

Given an ordered set of labels L = {l1, . . . , lk}, we impose a total order on label sets as follows.

Definition 3.4.1. A label set L ⊆ L is lower than a label set L′ ⊆ L, denoted L < L′, if there exists

a label l1≤m≤k ∈ L such that

1. lm /∈ L and lm ∈ L′, and

2. there is not a label lm′|m′<m such that lm′ ∈ L and lm′ /∈ L′.

A label set L ⊆ L can be mapped into a binary string B(L) ∈ {0, 1}k, where Bm(L) = 1 if

lm ∈ L and 0 otherwise. Note that Bm(L) denotes the m-th binary digit in B(L). Then, a label set

L is lower than another label set L′ if its binary representation B(L) is lexicographically lower than

B(L′).
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Example 3.4.2. Given the label set L = {a, b, c, d, e, f}, the following inequalities between some of

its subsets hold. The second column contains the corresponding binary representations of the sets.

{} < {a, d, f} (000000 < 100101),

{d} < {c} (000100 < 001000),

{b, e} < {a, f} (010010 < 100001),

{a, f} < {a, b} (100001 < 110000).

Graph Indexing

Given a graph G ∈ G, a graph indexing is a tuple of bijections I(G) = 〈f, {Γu}u∈V〉, where f assigns

unique integers to each node u ∈ V and, given a node u ∈ V , Γu assigns unique integers to each

outgoing edge in Eo(u). Formally, the bijections are defined as

f : V → {1, . . . , |V|} s.t. f(v1) = 1,

Γu : Eo(u)→ {1, . . . , |Eo(u)|}, ∀u ∈ V .

Hence a graph indexing always assigns 1 to the designated start node v1. Since outgoing label sets

are unique due to Assumption 3.4.3, we use Γu(L) as shorthand for Γu(u, v, L).

Given a graph indexing I(G), we introduce an associated parent function ΠI : V \ {v1} →
{1, . . . , |V|} × N from nodes (excluding the start node v1) to pairs of integers, defined as

ΠI(v) = min
〈u,v,L〉∈Ei(v)

〈f(u),Γu(L)〉.

Here, the minimum is with respect to a lexicographical ordering of integer pairs. Hence ΠI(v) = 〈i, e〉
is the smallest integer i assigned to any node on an incoming edge to v and, in the case of ties, the

smallest integer e on such an edge. The parent function is well-defined since |E i(v)| ≥ 1 for each

v ∈ V \ {v1} due to Assumption 3.4.2.

We consider the graph indexing that corresponds to a breadth-first search (BFS) traversal of the

graph G, which we proceed to define.

Definition 3.4.2 (BFS traversal). A graph indexing I(G) is a BFS traversal if the following con-

ditions hold:

1. For each pair of nodes u and v in V \ {v1}, ΠI(u) < ΠI(v)⇔ f(u) < f(v).

2. For each node u ∈ V and each pair of outgoing edges 〈u, v, L〉 and 〈u, v′, L′〉 in Eo(u), L <

L′ ⇔ Γu(L) < Γu(L′).

Due to the second condition in Definition 3.4.2, the bijection Γu of each node u ∈ V clearly orders

outgoing edges by their label sets. Due to the first condition, the bijection f orders node u before

node v if the parent function of u is smaller than that of v. In a BFS traversal from v1, nodes are

processed in the order they are first visited. In this context, the parent function identifies the edge

used to visit a node for the first time. Together, these facts imply that f assigns integers to nodes

in the order they are visited by a BFS traversal from v1, given that the label set ordering is used to
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break ties among edges. This BFS traversal can be characterized by a BFS subtree whose edges are

defined by the parent function.

Example 3.4.3. The figure below shows a graph indexing for the graph in Example 3.4.1, with nodes

and edges labeled by their assigned integer. This graph indexing is a BFS traversal since nodes are

ordered according to their distance from the start node v1, and since the edge integers used to break

ties are consistent with the label set ordering shown in Example 3.4.2. The parent function is given

by ΠI(v2) = 〈4, 1〉, ΠI(v3) = 〈1, 3〉, ΠI(v4) = 〈1, 1〉, and ΠI(v5) = 〈1, 2〉, and the corresponding

BFS subtree appears in bold.

1 : v1

3 : v5

2 : v4

4 : v3 5 : v2

2 : {a, f}

1 : {b, e}

3 : {a, b}

1 : {b}

1 : {a}

2 : {c}

1 : {d}

The important property that we exploit about BFS traversals is that they are unique, which we

prove in Lemma 3.4.1. To prove it, we use the result in Proposition 3.4.1 when BFS is applied to

any kind of directed graph where all nodes are reachable.

Proposition 3.4.1. If BFS visits the neighbors of each node in a fixed order, the resulting tree is

unique.

Proof. By contradiction. Assume that two different BFS trees, T and T ′, are produced using the

same visitation criteria. Then T contains an edge 〈u, v〉 that is not in T ′, and T ′ contains an edge

〈u′, v〉 that is not in T . In the case of T , this means that u was visited before u′. Analogously, u′

was visited before u to produce T ′. Therefore, the visitation criteria is different for each of the BFS

trees. This is a contradiction.

Lemma 3.4.1. Each graph G ∈ G has a unique associated BFS traversal I(G).

Proof. Intuitively, the lemma holds because there is only one way to perform a BFS traversal from

v1, given that we use the label set ordering to break ties among edges.

Formally, for each u ∈ V , since outgoing label sets are unique by Assumption 3.4.3, there is a

unique bijection Γu that satisfies the second condition in Definition 3.4.2. If Γu orders outgoing

edges in any other way, there will always be two outgoing edges 〈u, v, L〉 and 〈u, v′, L′〉 in Eo(u) such

that L < L′ and Γu(L) > Γu(L′), thus violating the condition.

Then, if we fix the correct definition of Γu for each u ∈ V , there is a unique bijection f that

satisfies the first condition in Definition 3.4.2. To recover this bijection we can simply perform a BFS

traversal from v1, using the bijections Γu, u ∈ V , to break ties among edges. By Proposition 3.4.1,

this results in a unique BFS tree. If f orders nodes in any other way, there will always be two nodes

u and v in V \ {v1} such that ΠI(u) < ΠI(v) and f(u) > f(v), thus violating the condition.
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3.4.2 SAT Encoding

We define a SAT formula that encodes a BFS traversal I(G) = 〈f, {Γu}u∈V〉 of a given graph

G = 〈V , E〉 in the class G, defined on a set of labels L = {l1, . . . , lk}. Since a graph indexing I(G)

assigns unique integers to nodes and edges, we use i to refer to a node u such that f(u) = i, 〈i, e〉
or 〈i, e, L〉 to refer to an edge 〈u, v, L〉 such that f(u) = i and Γu(L) = e, and m to refer to a label

lm ∈ L. We sometimes extend this notation in the natural way, e.g. by writing Γi(L), Eo(i) and

ΠI(i).

Variables

We first define a set X of propositional SAT variables for all combinations of symbols (sometimes

with restrictions as indicated):

1. ed(i, j, e), [edge 〈i, e〉 ends in node j]

2. label(i, e,m), [the label set on edge 〈i, e〉 includes lm ∈ L]

3. pa(i, j), i < j, [node i is the parent of j in the BFS subtree]

4. sm(i, j, e), i < j, [e is the smallest integer on a BFS edge from node i to j]

5. lt(i, e− 1, e,m), e > 1, [there is a label lm′|m′≤m on 〈i, e〉 and not on 〈i, e− 1〉]

Intuitively, variables ed(i, j, e) and label(i, e,m) are used to encode a graph G together with an

associated graph indexing I(G), variables pa(i, j) and sm(i, j, e) are used to encode the parent

function ΠI , and variables lt(i, e− 1, e,m) are used to encode the label set ordering.

Clauses

We next define a set C of clauses on X for all combinations of symbols (sometimes with restrictions

as indicated). The first set of clauses (1–8) enforces the first condition in Definition 3.4.2: for any

two nodes i > 1 and j > 1, ΠI(i) < ΠI(j)⇔ i < j.

1.
∨
i|i<j pa(i, j), j > 1, [node j > 1 has incoming BFS edge]

2. pa(i, j)⇒ ¬pa(i′, j), i < i′ < j, [incoming BFS edge is unique]

3. pa(i, j)⇒
∨
e sm(i, j, e), i < j, [BFS edge implies smallest integer]

4. pa(i, j)⇒ ¬ed(i′, j′, e), i′ < i < j ≤ j′, [respect BFS order]

5. sm(i, j, e)⇒ pa(i, j), i < j, [smallest integer implies BFS edge]

6. sm(i, j, e)⇒ ¬sm(i, j, e′), i < j, e < e′, [smallest integer is unique]

7. sm(i, j, e)⇒ ed(i, j, e), i < j, [smallest integer implies edge]

8. sm(i, j, e)⇒ ¬ed(i, j′, e′), i < j ≤ j′, e′ < e, [correctly break ties]

Intuitively, Clauses 1 and 2 state that each node j > 1 has a unique parent node i in the BFS

subtree. Clauses 3, 5 and 6 state that each node j > 1 has a unique incoming edge 〈i, e〉 with

smallest integer e from its parent i in the BFS subtree. Clause 7 ensures that the incoming edge

〈i, e〉 to j in the BFS subtree corresponds to an actual edge in the graph G.

Clauses 4 and 8 constitute the core of symmetry breaking by enforcing the condition that ΠI(i) <

ΠI(j) should imply i < j. By definition of ΠI , the incoming edge 〈i, e〉 to j in the BFS subtree

should be the lexicographically smallest such integer pair. Hence the graph G cannot contain any

incoming edge 〈i′, e′〉 to j from a node i′ < i. In addition, no node j′ > j can have such an incoming
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edge either, since otherwise its parent function would be smaller than that of j, thus violating the

desired condition. These two facts are jointly encoded in Clause 4 by enforcing the restriction j′ ≥ j.
Likewise, if 〈i, e〉 is the incoming edge to j in the BFS subtree, the graph G cannot contain an

incoming edge 〈i, e′〉 from the same node i with e′ < e. Again, no node j′ > j can have such an

incoming edge either, since otherwise its parent function would be smaller than that of j. These two

facts are jointly encoded in Clause 8 by enforcing the restriction j′ ≥ j.
The second set of clauses (9–14) assigns edge integers to the outgoing edges from each node,

enforcing the second condition in Definition 3.4.2: for each node i and pair of outgoing edges 〈i, e, L〉
and 〈i, e′, L′〉, L < L′ ⇔ e < e′. Due to the transitivity of the relation <, it is sufficient to check

that the condition holds for all pairs of consecutive edge integers 〈e−1, e〉. Clauses 9 and 10 enforce

that edge integers are unique between 1 and |Eo(i)|.

9. ed(i, j, e)⇒
∨
j′ ed(i, j′, e− 1), e > 1, [edge integers start at 1 and are contiguous]

10. ed(i, j, e)⇒ ¬ed(i, j′, e), j < j′, [edge integers cannot be duplicated]

Clauses 11–14 are used to enforce that two consecutive edges 〈i, e−1, L〉 and 〈i, e, L′〉 satisfy L < L′.

Formally, variable lt(i, e−1, e,m) is only true if there exists m′ ≤ m such that lm′ /∈ L and lm′ ∈ L′.
This is implemented using the following two clauses:

11. lt(i, e− 1, e,m)⇒ ¬label(i, e− 1,m) ∨ lt(i, e− 1, e,m− 1), e > 1,

12. lt(i, e− 1, e,m)⇒ label(i, e,m) ∨ lt(i, e− 1, e,m− 1), e > 1.

Hence if lt(i, e − 1, e,m) holds, either lm /∈ L and lm ∈ L′, or lt(i, e − 1, e,m − 1) holds for m − 1.

The disjuncts mentioning m − 1 are only evaluated when m > 1. The next clause ensures that for

each edge 〈i, e〉 with e > 1, lt(i, e− 1, e,m) is true for at least one label lm ∈ L:

13. ed(i, j, e)⇒
∨
m lt(i, e− 1, e,m), e > 1.

Finally, the following clause encodes the second part of Definition 3.4.1, ensuring that the label set

on edge 〈i, e〉 is not lower than that on 〈i, e− 1〉:

14. lt(i, e− 1, e,m) ∨ ¬label(i, e− 1,m) ∨ label(i, e,m), e > 1.

Properties

We proceed to prove several properties about the SAT encoding. Concretely, we show that there

is a one-to-one correspondence between the BFS traversal of a graph and a solution to the SAT

encoding.

Definition 3.4.3. Given a graph G = 〈V , E〉 ∈ G defined on a set of labels L = {l1, . . . , lk} and an

associated graph indexing I(G) = 〈f, {Γu}u∈V〉, let X(G, I) be an assignment to the SAT variables

in X , assigning false to all variables in X except as follows:

• For each edge 〈u, v, L〉 ∈ E, ed(f(u), f(v),Γu(L)) is true.

• For each edge 〈u, v, L〉 ∈ E and each label lm ∈ L, label(f(u),Γu(L),m) is true.
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• For each node v ∈ V \ {v1} with ΠI(v) = 〈i, e〉, pa(i, f(v)) and sm(i, f(v), e) are true.

• For each node u ∈ V, each pair of outgoing edges 〈u, v, L〉 and 〈u, v′, L′〉 in Eo(u) such that

Γu(L) = Γu(L′) − 1, and each label lm ∈ L, lt(f(u),Γu(L),Γu(L′),m) is true if there exists

m′ ≤ m such that lm′ /∈ L and lm′ ∈ L′.

Example 3.4.4. Given the graph G, graph indexing I(G) and set of labels L = {a, b, c, d, e, f} from

Example 3.4.3, the assignment X(G, I) makes the following SAT variables in X true:

ed(1, 2, 1) label(1, 1, 2) label(1, 1, 5) ed(1, 3, 2) label(1, 2, 1) label(1, 2, 6)

ed(1, 4, 3) label(1, 3, 1) label(1, 3, 2) ed(2, 4, 1) label(2, 1, 1)

ed(3, 4, 1) label(3, 1, 2) ed(4, 5, 1) label(4, 1, 4) ed(4, 5, 2) label(4, 2, 3)

pa(1, 2) pa(1, 3) pa(1, 4) pa(4, 5)

sm(1, 2, 1) sm(1, 3, 2) sm(1, 4, 3) sm(4, 5, 1)

lt(1, 1, 2, 1) lt(1, 1, 2, 2) lt(1, 1, 2, 3) lt(1, 1, 2, 4) lt(1, 1, 2, 5) lt(1, 1, 2, 6)

lt(1, 2, 3, 2) lt(1, 2, 3, 3) lt(1, 2, 3, 4) lt(1, 2, 3, 5) lt(1, 2, 3, 6)

lt(4, 1, 2, 3) lt(4, 1, 2, 4) lt(4, 1, 2, 5) lt(4, 1, 2, 6)



.

Theorem 3.4.1. Given a graph G and a graph indexing I(G), the assignment X(G, I) to the SAT

variables in X satisfies all SAT clauses in C if and only if I(G) is a BFS traversal.

Proof. ⇐: Assume that I(G) is a BFS traversal (i.e., it satisfies the conditions of Definition 3.4.2).

We show that each clause in C is satisfied:

1.
∨
i|i<j pa(i, j) holds for v such that f(v) = j > 1 since pa(i, j) is true for ΠI(v) = 〈i, e〉.

2. pa(i, j)⇒ ¬pa(i′, j) holds since pa(i, j) is true for a single i.

3. pa(i, j) ⇒
∨
e sm(i, j, e) holds for v such that f(v) = j since pa(i, j) and sm(i, j, e) are true

for ΠI(v) = 〈i, e〉.

4. pa(i, j) ⇒ ¬ed(i′, j′, e) holds for v such that f(v) = j and i′ < i < j = j′ since ΠI(v) = 〈i, e〉
is the lexicographically smallest integer pair on incoming edges to v, implying that G cannot

contain an edge to v from a node u with f(u) = i′ < i. Moreover, since I(G) is a BFS

traversal, we cannot have ΠI(w) < ΠI(v) for a node w with f(w) = j′ > j, else the second

condition in Definition 3.4.2 is violated. Hence G cannot contain an edge to w from a node u

with f(u) = i′ < i, so the clause also holds for i′ < i < j < j′.

5. sm(i, j, e) ⇒ pa(i, j) holds for v such that f(v) = j since pa(i, j) and sm(i, j, e) are true for

ΠI(v) = 〈i, e〉.

6. sm(i, j, e)⇒ ¬sm(i, j, e′) holds since sm(i, j, e) is true for a single i and e.

7. sm(i, j, e) ⇒ ed(i, j, e) holds for v such that f(v) = j since ΠI(v) = 〈i, e〉 implies that there

exists an edge 〈u, v, L〉 ∈ E with f(u) = i and Γu(L) = e.

8. sm(i, j, e)⇒ ¬ed(i, j′, e′) holds for v such that f(v) = j and j = j′ since ΠI(v) = 〈i, e〉 is the

lexicographically smallest integer pair on incoming edges to v, implying that G cannot contain

an edge 〈u, v, L〉 with f(u) = i and Γu(L) < e. For j < j′, the parent function of the node w
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with f(w) = j′ cannot be smaller than that of v, else the second condition in Definition 3.4.2

is violated. Hence G cannot contain an edge 〈u,w, L〉 with f(u) = i and Γu(L) < e. Thus the

clause also holds for the case j < j′.

9. ed(i, j, e) ⇒
∨
j′ ed(i, j′, e − 1) holds for u with f(u) = i since Γu is a bijection onto {1, . . . ,

|Eo(u)|}.

10. ed(i, j, e)⇒ ¬ed(i, j′, e) holds for u with f(u) = i since Γu is a bijection.

11. lt(i, e− 1, e,m)⇒ ¬label(i, e− 1,m) ∨ lt(i, e− 1, e,m− 1) holds for u, f(u) = i, and outgoing

edges 〈u, v, L〉, 〈u, v′, L′〉 with Γu(L) = e − 1 = Γu(L′) − 1 since lt(i, e − 1, e,m) implies that

either lm /∈ L or there exists m′ < m such that lm′ /∈ L and lm′ ∈ L′.

12. lt(i, e− 1, e,m)⇒ label(i, e,m) ∨ lt(i, e− 1, e,m− 1) holds for the same setting since lt(i, e−
1, e,m) implies that either lm ∈ L′ or there exists m′ < m such that lm′ /∈ L and lm′ ∈ L′.

13. ed(i, j, e)⇒
∨
j′ ed(i, j′, e− 1) holds since I(G) is a BFS traversal, implying that the bijection

Γu for u with f(u) = i satisfies L < L′ whenever Γu(L) < Γu(L′) (and in particular when

Γu(L) = e− 1 = Γu(L′)− 1). Since L < L′, there has to exist at least one m, 1 ≤ m ≤ k such

that lm /∈ L and lm ∈ L′ due to Definition 3.4.1.

14. lt(i, e−1, e,m)∨¬label(i, e−1,m)∨ label(i, e,m) also holds for u with f(u) = i since Γu(L) =

e− 1 = Γu(L′)− 1 implies L < L′. Hence for the given m, Definition 3.4.1 is satisfied either 1)

by a label lm′≤m, implying that lt(i, e− 1, e,m) is true; or 2) by a label lm′>m, implying that

lm ∈ L and lm /∈ L′ cannot both be true.

⇒: Assume that X(G, I) satisfies all SAT clauses. We show that I(G) is a BFS traversal. First

note from above that X(G, I) satisfies all clauses except 4, 8, 13 and 14 even if I(G) is not a BFS

traversal. Hence we can focus exclusively on these four clauses.

We first analyze Clauses 13 and 14. For Clause 13 to be true, any edge 〈i, e〉 induced from

graph G with e > 1 has to satisfy lt(i, e − 1, e,m) for at least one label lm ∈ L. Let u be the

node with f(u) = i and let 〈u, v, L〉 and 〈u, v′, L′〉 be the two outgoing edges in Eo(u) such that

Γu(L) = e − 1 = Γu(L′) − 1. By definition of X(G, I) there exists m, 1 ≤ m ≤ k such that lm /∈ L
and lm ∈ L′. For the smallest such m there cannot exist m′ < m such that lm′ ∈ L and lm′ /∈ L′,
else Clause 14 would be violated for m′. Hence Definition 3.4.1 holds for label lm, implying L < L′.

We next analyze Clauses 4 and 8. Let u be the node such that f(u) = j and ΠI(u) = 〈i, e〉, and

let v be any node such that f(v) = j′ > j. Since Clause 4 holds, graph G cannot contain an edge

〈w, v, L〉 such that f(w) = i′ < i. Since Clause 8 holds, graph G cannot contain an edge 〈w, v, L〉
such that f(w) = i and Γw(L) < e. Since ΠI(v) cannot equal 〈i, e〉, it has to be larger than 〈i, e〉,
implying ΠI(u) < ΠI(v).

We have shown that the two conditions in Definition 3.4.2 hold: for each pair of nodes u and v

in V \{v1}, ΠI(u) < ΠI(v) implies f(u) < f(v), and for each node u ∈ V and pair of outgoing edges

〈u, v, L〉 and 〈u, v′, L′〉 in Eo(u), L < L′ implies Γu(L) < Γu(L′). Hence by definition I(G) is a BFS

traversal.

Definition 3.4.4. Let X be an assignment to the SAT variables X that satisfies the SAT clauses

in C. Given an edge 〈i, e〉, let L(i, e) = {lm | label(i, e,m)} be the label set induced by X. We
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define a mapping G(X) = 〈G, I(G)〉 from X to a graph G = 〈V , E〉 and associated graph indexing

I(G) = 〈f, {Γu}u∈V〉 as follows:

• The set of nodes is V = {v1, . . . , vn}, where n is the largest node index in the assignment, and

f(vi) = i for each vi ∈ V.

• The set of edges is E = {(vi, vj , L(i, e)) | ed(i, j, e)} and Γvi(L(i, e)) = e.

• The parent function of each vj ∈ V equals ΠI(vj) = 〈i, e〉 if sm(i, j, e) is true.

Theorem 3.4.2. Given an assignment X to the SAT variables X that satisfies all clauses in C,

the mapping G(X) = 〈G, I(G)〉 induces a graph G in the class G and a well-defined graph indexing

I(G).

Proof. We first show that the induced graph indexing I(G) is well-defined. Clearly f is a bijection

onto {1, . . . , |V|} by definition. We next show that Γvi is a bijection onto {1, . . . , |Eo(vi)|} for each

node vi ∈ V . Clause 10 ensures that ed(i, j, e) and ed(i, j′, e) cannot be true simultaneously for

j 6= j′. Due to Clause 9, if edge 〈i, e〉 is defined for e > 1, then so is 〈i, e − 1〉. Applying this

argument recursively implies that 〈i, e〉 is uniquely defined for e ∈ {1, . . . , |Eo(vi)|}, where |Eo(vi)|
is the largest integer of an outgoing edge from i.

We next show that the induced label set L(i, e) on each outgoing edge 〈i, e〉 from i is unique.

Clause 13 implies that for each edge 〈i, e〉 with e > 1, lt(i, e − 1, e,m) is true for at least one label

lm ∈ L. Clauses 11 and 12 ensure that lt(i, e − 1, e,m) is true only if there exists m′ ≤ m such

that ¬label(i, e − 1,m′) and label(i, e,m′) are true. For the smallest such m′ there cannot exist

m′′ < m′ such that label(i, e− 1,m′′) and ¬label(i, e,m′′) are true, else Clause 14 would be violated

for m′′. Hence label lm satisfies the condition in Definition 3.4.1 with respect to the induced label

sets L(i, e− 1) and L(i, e), implying L(i, e− 1) < L(i, e).

In conclusion, we have shown that 〈i, e〉 is uniquely defined for e ∈ {1, . . . , |Eo(vi)|}, and that

L(i, e−1) < L(i, e) holds for each pair of consecutive integers in {1, . . . , |Eo(vi)|}. Since Γvi is defined

as Γvi(L(i, e)) = e for each e ∈ {1, . . . , |Eo(vi)|}, this implies that Γvi is a well-defined bijection from

Eo(vi) to {1, . . . , |Eo(vi)|}.
We also need to show that the induced parent function ΠI is well-defined, i.e. that for each j > 1,

sm(i, j, e) is true for a single i and e, and that ΠI(vj) = 〈i, e〉 is consistent with the definition of ΠI .

Clauses 1 and 2 imply that pa(i, j) is true for a single i. Clauses 3, 5 and 6 imply that sm(i, j, e)

can only be true for the same i and j as pa(i, j), and that sm(i, j, e) is true for a single e. For

ΠI(vj) = 〈i, e〉 to hold, G has to contain the edge 〈vi, vj , L(i, e)〉, which is guaranteed by Clause 7.

Moreover, G cannot contain any edge 〈vi′ , vj , L(i′, e′)〉 such that 〈i′, e′〉 < 〈i, e〉, which is guaranteed

by Clauses 4 and 8.

We finally show that the induced graph G belongs to the class G, i.e. all three assumptions on

the graphs are satisfied. We satisfy Assumption 3.4.1 by designating v1 as the start node. We have

already shown above that the induced label set L(i, e) on each outgoing edge 〈i, e〉 from i is unique,

satisfying Assumption 3.4.3. It remains to show that Assumption 3.4.2 holds, i.e. that each node

vj , j > 1, is reachable from v1. Since sm(i, j, e) is true for a single i and e such that i < j, G has

to contain the edge 〈vi, vj , L(i, e)〉 due to Clause 7. Aggregating these incoming edges for all nodes

different from v1 results in a BFS subtree rooted in v1, and each node vj , j > 1, is reachable from

v1 in this subtree.
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We combine the previous theoretical results and show there is a one-to-one correspondence be-

tween the BFS traversal of a graph and a solution to the SAT encoding. By Theorem 3.4.2, the

mapping G(X) of a satisfying assignment X to the SAT clauses in C induces a graph G ∈ G and a

well-defined graph indexing I(G). By Theorem 3.4.1, I(G) is a BFS traversal since X satisfies all

clauses. Finally, since by Lemma 3.4.1 each graph G ∈ G has a unique BFS traversal, it follows that

the SAT encoding cannot generate two permutations of node integers that represent the same graph

G. Hence the SAT encoding breaks the symmetries in graphs such as those in Figure 3.4.

3.4.3 Application to Reward Machines

In this section, we show that reward machines are a particular case of the labeled directed graphs

on which we have formalized our symmetry breaking method. We present two ASP encodings of the

method for its application to RMs. Both encodings build on the factual ASP representation of RMs,

and their respective descriptions are preceded by a section introducing commonalities between these.

The first encoding is a direct translation from the SAT clauses in the previous section, whereas the

second encoding results from leveraging ASP-specific aspects for improved efficiency. These rules

are used to speed up the learning of the RMs described in Chapter 4. Crucially, since the proposed

graph indexing is unique due to Lemma 3.4.1, the RM learner can only represent each graph in one

way, precluding multiple symmetric variations; in fact, any unique graph indexing could have been

used for this purpose.

Reward Machines as Labeled Directed Graphs

A reward machine M = 〈U ,P, ϕ, r, u0, uA, uR〉 is a special case of labeled directed graph G = 〈V , E〉
in the class G. The set of RM states U corresponds to the set of nodes V, and the logical transition

function ϕ corresponds to the set of edges E . Besides, reward machines comply with all three

assumptions we made about graphs in the class G:

• Assumption 3.4.1 holds because reward machines have an initial state u0.

• Assumption 3.4.2 is enforced through the following rules. The first rule defines the initial

state u0 to be reachable, while the second rule indicates that a state is reachable if it has an

incoming edge from a reachable state. The third rule enforces all states to be reachable.
reachable(u0).

reachable(Y) : - reachable(X), ed(X, Y, ).

: - not reachable(X), state(X).


• Assumption 3.4.3 holds for the following two reasons. First, since the logical transition function

is deterministic, the formulas labeling two outgoing edges from a given state to two different

states are mutually exclusive and, hence, different. Second, the DNF formula between two

states never includes a disjunct twice or more; thus, there cannot be two edges between the

same state-pair labeled by the same formula.

Even though reward machines comply with the three assumptions on labeled directed graphs,

there are two differences between them:
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1. The edges of an RM are labeled by propositional formulas over a set of propositions P, whereas

the edges of a labeled directed graph are defined over a set of labels L.5

2. The edge indices in an indexed labeled directed graph differ from those in our ASP represen-

tation of an RM. The graph indexing presented for labeled directed graphs assigns a different

index to each of the outgoing edges from a node; in contrast, indices are unique for each pair

of states in the ASP representation of an RM (i.e., indices can be repeated for edges between

other pairs).

To address these discrepancies, we map the representation for RMs into a representation for labeled

directed graphs on top of which we define the symmetry breaking constraints. In what follows,

we first describe a mapping from RMs to labeled directed graphs; next, we introduce two ASP

encodings (a SAT-based one and an efficient alternative) of the symmetry breaking rules that build

on the previous mapping.

Common Encoding

In the following paragraphs, we describe the rules shared by the two encodings presented later.

Mapping Propositions into Labels. We denote the set of labels characterizing labeled directed

graphs by Lsb. The proposition set P used to label the edges of an RM is mapped into a set of

labels Lsb, which consists of integer values for easy comparison. Each of these integers encodes

either a proposition or its negation. Formally, given a proposition set P and a bijective function

f : P → {1, . . . , |P|} mapping each proposition to a different integer between 1 and |P|, the set of

labels is

Lsb = {f(p), |P|+ f(p) | p ∈ P} , (3.1)

where f(p) is the label associated with p and f(p) + |P| is the label associated with ¬p; therefore,

Lsb consists of 2|P| labels, where labels 1, . . . , |P| correspond to the propositions, and labels |P| +
1, . . . , 2|P| correspond to their respective negations. The mapping is encoded in ASP using the

following atoms:

• prop id(p, l) indicates that proposition p ∈ P is associated with label l.

• num props(i) indicates that the proposition set has size i.

• valid sb label(l) indicates that l is a label.

We simply ground the above atoms according to their descriptions:

{prop id(p, f(p)). | p ∈ P} ∪ {num props(|P|).} ∪ {valid sb label(l). | 1 ≤ l ≤ 2|P|} .

To complete the mapping, we map the formulas on the edges into label sets leveraging the factual

representation from Definition 3.3.3. Labels are represented using facts label similar to the variables

employed in the SAT encoding; however, these facts differ across the two proposed encodings, so we

will describe them in the respective sections.

5The labels from the symmetry breaking formalization should not be confused with the labels observed during the
interaction with a labeled MDP. The former could be anything comparable (e.g., integers, strings), while the latter
are exclusively sets of propositions. We disambiguate these where needed in the rest of the section.
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State Ordering. To enforce a BFS traversal on the RMs, the states are assigned an integer index

for easy comparison akin to the SAT encoding (see Section 3.4.2). The atom state id(u, i) denotes

that the RM state u has index i and its ground instances are:

{
state id(ui, i). | ui ∈ U \

{
uA, uR

}}
.

Unlike the bijection f , we here (without loss of generality) assign indices starting from 0 instead

of 1 since the first state is u0. Besides, the accepting and rejecting states are not given an index

(i.e., they are excluded from the BFS ordering) as they are fixed and hence cannot be interchanged

with other states, and they cannot be the parent of any other state since they do not have outgoing

transitions by Assumption 3.2.2.

Both encodings use the rules below to compare the indices of two states easily. The first rule

defines the atom state lt(u, u′), which expresses that the index of state u is lower than that of u′;

likewise, the second rule defines the atom state leq(u, u′), which expresses that the index of state

u is lower or equal than that of u′.{
state lt(X, Y) : - state id(X, XID), state id(Y, YID), XID<YID.

state leq(X, Y) : - state id(X, XID), state id(Y, YID), XID<=YID.

}

SAT-Based Encoding

This encoding is a direct translation from the SAT encoding introduced in Section 3.4.2, which

includes three parts: (i) a mapping from the edge indices used by RMs into the edge indices used

in the symmetry breaking method, (ii) a mapping from formulas over propositions into label sets

using the previously introduced mapping from propositions into labels, and (iii) a set of ASP rules

to represent the SAT clauses.

Edge Index Mapping. The range of possible edge indices in the target representation is given

by the atom edge id(i), where i is an edge index, whose ground instances are:

{edge id(i). | 1 ≤ i ≤ (|U| − 1)κ} ,

where κ is the maximum number of edges from one state to another; hence, (|U|−1)κ is the maximum

number of outgoing edges from a state since each state can have edges to |U| − 1 different states.

The mapping is represented through facts of the form mapping(u, v, e, e′) indicating that edge

e between u and v is mapped into e′, and enforced using the rules below. The first rule describes

that an edge index E from X to Y is mapped into exactly one edge index EE in the range given by

the edge id facts.6 The second rule enforces two outgoing edges from a state X to two different

states Y and Z to be mapped into different edge indices. The third rule enforces two edge indices E

and EP between the same state-pair 〈X, Y〉 to be mapped into different edge indices. The fourth rule

indicates that if there are two edge indices E and EP between states X and Y such that E<EP, then

6The head of the choice rule employs a conditional literal (Gebser et al., 2019) of the form l0 : l1, . . . , ln. In
this case, l0, . . . , ln are atoms, and l1, . . . , ln constitute the condition. This choice rule thus compactly expresses a
choice over a set of atoms; indeed, the rule is equivalent to 1{mapping(X, Y, E, 1); mapping(X, Y, E, 2)}1 : - ed(X, Y, E). if
edge id(i) is true only for i ∈ {1, 2}.
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the indices they are mapped into (EE and EEP) must preserve the ordering (EE<EEP).
1{mapping(X, Y, E, EE) : edge id(EE)}1 : - ed(X, Y, E).

: - mapping(X, Y, , EE), mapping(X, Z, , EE), Y<Z.

: - mapping(X, Y, E, EE), mapping(X, Y, EP, EE), E<EP.

: - ed(X, Y, E), ed(X, Y, EP), E<EP, mapping(X, Y, E, EE), mapping(X, Y, EP, EEP), EE>EEP.


Given the mapping above, we redefine the ed, pos and neg facts used in the factual representation

of the RMs using the following rules:
map ed(X, Y, EP) : - ed(X, Y, E), mapping(X, Y, E, EP).

map pos(X, Y, EP, P) : - pos(X, Y, E, P), mapping(X, Y, E, EP).

map neg(X, Y, EP, P) : - neg(X, Y, E, P), mapping(X, Y, E, EP).

 .

The map ed, map pos, and map neg predicates are used in the ASP encoding of the symmetry breaking

constraints explained later.

Mapping Formulas into Label Sets. Formulas over a set of propositions are mapped into label

sets by leveraging the previously described proposition-to-label and edge index mappings. The first

rule sets PID as a label of edge E from X if the corresponding proposition P appears positively in

that edge. The second rule sets PID+N as a label of edge E from X if the corresponding proposition

P appears negatively in that edge and N is the number of propositions.{
label(X, E, PID) : - map pos(X, Y, E, P), prop id(P, PID).

label(X, E, PID+N) : - map neg(X, Y, E, P), prop id(P, PID), num props(N).

}

Symmetry Breaking Rules. Analogously to the SAT encoding, the ASP representation includes

three parts. First, we introduce the rule set enforcing the indexing given by the BFS traversal on the

RM. These rules are defined in terms of an auxiliary atom ed sb(u, u′, i) equivalent to map ed(u, u′, i)

but only defined for those states u′ that have a state index (i.e., all states except for the accepting

and rejecting states):

ed sb(X, Y, E) : - map ed(X, Y, E), state id(Y, ).

The resulting set of rules for Clauses 1–8 in the SAT encoding is:

1{pa(X, Y) : state(X), state lt(X, Y)} : - state(Y), state id(Y, YID), YID>0.

: - pa(X, Y), pa(XP, Y), state lt(X, XP), state lt(XP, Y).

1{sm(X, Y, E) : edge id(E)} : - pa(X, Y).

: - pa(X, Y), ed sb(XP, YP, ), state lt(XP, X), state leq(Y, YP).

: - sm(X, Y, ), not pa(X, Y).

: - sm(X, Y, E), sm(X, Y, EP), E<EP.

: - sm(X, Y, E), not ed sb(X, Y, E).

: - sm(X, Y, E), ed sb(X, YP, EP), state lt(X, Y), state leq(Y, YP), EP<E.



.

The next rule set encodes Clauses 9 and 10, which enforces edge indices to be unique between 1
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and the number of outgoing edges from a given state:{
: - map ed(X, Y, E), not map ed(X, , E−1), E>1.

: - map ed(X, Y, E), map ed(X, Z, E), Y<Z.

}
.

The rule set below encodes Clauses 11–14 in ASP. Clauses 11 and 12 are divided into two rules

respectively to cover the different label values, i.e. L=1 (there are no lower-valued labels to compare

to) and L>1 (there are lower-valued labels to compare to).

: - lt(X, E−1, E, L), label(X, E−1, L), not lt(X, E−1, E, L−1), E>1, L>1.

: - lt(X, E−1, E, L), label(X, E−1, L), E>1, L=1.

: - lt(X, E−1, E, L), not label(X, E, L), not lt(X, E−1, E, L−1), E>1, L>1.

: - lt(X, E−1, E, L), not label(X, E, L), E>1, L=1.

1{lt(X, E−1, E, L) : valid sb label(L)} : - map ed(X, Y, E), E>1.

: - not lt(X, E−1, E, L), label(X, E−1, L), not label(X, E, L), map ed(X, , E), E>1.


Efficient Alternative Encoding

The encoding we describe here is an alternative to the SAT-based encoding that performs symmetry

breaking more efficiently. Like the SAT-based approach, this encoding addresses the fact that edge

indexing required by the symmetry breaking method differs from that in the RM representation;

however, we here do not use an intermediate mapping and directly operate on the edge indices

from the RM representation. Remember that the edge indexing used in the symmetry breaking is

such that each outgoing edge from a given state has a different index; that is, an integer number

uniquely identifies each edge. Here, we preserve the same uniqueness principle by expressing edges

as (u, (v, e)), meaning that there is an edge from u to v with edge index e. The tuple (v, e) uniquely

identifies each outgoing edge from u.

The section is divided into two parts. First, like in the SAT-based approach, we map propositional

formulas on the edges into label sets. Then, we describe the set of ASP rules for breaking symmetries.

Mapping Formulas into Label Sets. We use the atoms label(u, (v, e), l) to express that label

l appears in the edge from state u to state v with index e. The rule set below transforms the

formulas over propositions into label sets. The first rule sets PID as a label of edge (Y, E) from X

if the corresponding proposition P appears positively in that edge. Likewise, the second rule sets

PID+N as a label of edge (Y, E) from X if the corresponding proposition P appears negatively in that

edge and N is the number of propositions.{
label(X, (Y, E), PID) : - pos(X, Y, E, P), prop id(P, PID).

label(X, (Y, E), PID+N) : - neg(X, Y, E, P), prop id(P, PID), num props(N).

}
(3.2)

While the label predicate in the SAT-based encoding only used the edge index for referring to an

outgoing edge, we here use a state-edge pair, as explained before.

Symmetry Breaking Rules. We start by describing the rules that enforce outgoing edges from

a given state to be ordered by their respective label sets. The atoms ed lt(u, (v, e), (v′, e′)) indicate

that the edge from u to v with edge index e is lower than the edge from u to v′ with edge index e′.



52 CHAPTER 3. FORMALISM OF REWARD MACHINES

The rule set below encodes how this ordering is determined and what constraints are imposed on

it. The first rule determines that given two outgoing edges from X, (Y, E) and (YP, EP), either (Y, E)

is lower than (YP, EP) or vice versa. Now, the order between outgoing edges from a state X must

respect two constraints:

• The second rule enforces transitivity; that is, if Edge1 is lower than Edge2, and Edge2 is lower

than Edge3, then Edge1 must be lower than Edge3.7

• The third rule enforces that two edges to the same state Y must be ordered according to their

edge index; that is, given edges (Y, E) and (Y, EP) from X such that E<EP, edge (Y, E) must be

lower than (Y, EP).

1{ed lt(X, (Y, E), (YP, EP)); ed lt(X, (YP, EP), (Y, E))}1 : - ed(X, Y, E), ed(X, YP, EP),

(Y, E)<(YP, EP).

: - ed lt(X, Edge1, Edge2), ed lt(X, Edge2, Edge3), not ed lt(X, Edge1, Edge3),

Edge1!=Edge3.

: - ed lt(X, (Y, E), (Y, EP)), ed(X, Y, E), ed(X, Y, EP), E>EP.


(3.3)

The previous rule set guesses an ordering for the outgoing edges from a given state; however,

this ordering must comply with that of the label sets given in Definition 3.4.1. We use the atoms

label lt(u, (v, e), (v′, e′), l) to indicate there is a label l′ ≤ l that appears in edge (v′, e′) and does

not appear in a lower edge (v, e), both being outgoing edges from u. These atoms encode the

first condition in Definition 3.4.1 up to a specific label. The rule set below prunes solutions where

outgoing edges do not follow the established label ordering criteria. The first rule indicates that

label lt(X, Edge1, Edge2, L) is true if Edge1 is lower than Edge2, and the label L does not appear

in Edge1 and appears in Edge2. The second rule states that label lt is true for a valid label L+1 if

it is true for L. The third rule states that if Edge1 is lower than Edge2, then the label set on Edge1

must be lower than that on Edge2. The three last literals in the last rule enforce both conditions

from Definition 3.4.1.

label lt(X, Edge1, Edge2, L) : - ed lt(X, Edge1, Edge2), not label(X, Edge1, L),

label(X, Edge2, L).

label lt(X, Edge1, Edge2, L+1) : - label lt(X, Edge1, Edge2, L), valid sb label(L+1).

: - ed lt(X, Edge1, Edge2), label(X, Edge1, L), not label(X, Edge2, L),

not label lt(X, Edge1, Edge2, L).


The following set of rules imposes that lower edge indices cannot be left unused. First, we define

a fact edge id(i) for each possible edge index i between 1 and κ, where κ is the maximum number

of edges from one state to another. Second, the constraint indicates that if there is an edge from X

to Y with index E>1, there must be an edge between the same states but with index E−1 as well.{
edge id(1..κ).

: - ed(X, Y, E), not ed(X, Y, E−1), edge id(E), E>1.

}
(3.4)

Finally, we describe the rules for enforcing the BFS traversal on the RM. Like in the SAT-based

approach, we ground ed sb(u, u′, e) atoms for all edges except for those directed to an unindexed

7For conciseness, state-edge variable pairs such as (Y, E) are represented using a single variable (e.g., Edge1).
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state (i.e., the accepting and rejecting states):

ed sb(X, Y, E) : - ed(X, Y, E), state id(Y, ). (3.5)

Next, we introduce the pa(u, v) atoms denoting that state u is the parent of v in the BFS subtree,

which is equivalent to the variable pa(i, j) from the SAT encoding and used in the rule set below to

enforce the BFS ordering. The first rule defines that state X is the parent of Y if there is an edge

from X to Y, X has a lower index than Y, and there is no state Z whose index is lower than X’s and

has an edge to Y.8 The second rule indicates that all indexed states except for the initial state must

have a parent. The third rule imposes the BFS ordering similarly to Clause 4 in the SAT encoding.

The first two rules encode Clauses 1 and 2 of the SAT encoding.
pa(X, Y) : - ed sb(X, Y, ), state lt(X, Y),

#false : ed sb(Z, Y, ), state lt(Z, X).

: - state id(Y, YID), YID>0, not pa( , Y).

: - pa(X, Y), ed sb(XP, YP, ), state lt(XP, X), state leq(Y, YP).


We now need to enforce that the BFS children from a given state are correctly ordered; that is,

those children pointed by lower edges should be identified by lower state indices. The state ord(u)

atoms indicate that state u is properly ordered with respect to its siblings (i.e., other states with

the same parent state). The following rule set enforces this ordering. The first rule defines that a

state Y is correctly ordered with respect to its siblings if the edge from their parent X to Y, i.e. (Y, E),

is lower than the edge to another state (YP, EP) if Y<YP; that is, edges must be ordered according

to the order of the state indices. The second rule enforces all states with a parent to be correctly

ordered with respect to their siblings.
state ord(Y) : - ed sb(X, Y, E), pa(X, Y),

#false : ed sb(X, YP, EP), state lt(Y, YP), ed lt(X, (YP, EP), (Y, E)).

: - pa( , Y), not state ord(Y).


3.5 Summary

In this chapter, we formalized the tasks considered throughout the thesis and the RMs capturing their

reward functions. In the next chapter, we outline RL methods for exploiting the structure of these

RMs. Furthermore, we propose an RM learning method that leverages the ASP representation and

the symmetry breaking method presented here; crucially, the latter accelerates learning by discarding

multiple equivalent RMs from the search space.

8What follows #false must not hold in order to make the body of the rule true.
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Chapter 4

Learning and Exploiting Reward

Machines

In this chapter, we introduce two RL algorithms for exploiting the structure of a given reward

machine (Section 4.1), followed by a method for learning reward machines from traces (Section 4.2).

The described exploitation and learning methods are then put together into an algorithm that

interleaves them (Section 4.3).

4.1 Exploiting Reward Machines

We describe two policy learning methods that exploit the RM structure. Each method is character-

ized by a different way of using options :

1. Learning an option for each edge in the RM and a metapolicy to choose between options in

each RM state (Section 4.1.1).

2. Learning an option for each RM state (Section 4.1.2).

In both cases, the structure revealed by a reward machine M is exploited as follows. First, the

agent selects an option when it reaches an RM state. Note that in (1) there can be multiple options

to choose from, whereas in (2) there is a single option. Once an option is chosen, the agent selects

actions according to that option’s policy until its termination. An option terminates when either

(i) the episode ends, or (ii) a formula labeling an edge from the current RM state is satisfied. After

the agent experiences a tuple 〈st, at, st+1,Lt+1〉 in RM state u at timestep t, it transitions to RM

state u′ = δM (u,Lt+1) following the state-transition function of the RM.

Reward machines, as described in Section 2.1.5, compactly represent traces. The combination of

an environment state and an RM state makes rewards Markovian as long as the combination of an

environment state and a trace also makes them Markovian. Because each option is only executed

for a specific trace (represented by the current RM state), we can define an option’s policy over

environment states only.

In what follows, we describe the features of the RL methods including: how options are modeled,

how policies are learned, and which optimality guarantees they have.
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4.1.1 Learning an Option for each Edge and a Metapolicy for each State

(HRL)

The edges of a reward machine are labeled by propositional formulas over a set of propositions

P. Intuitively, each of these formulas represents a subgoal of the task represented by the RM. An

intuitive approach for exploiting the RM structure consists of learning (i) an option that aims to

reach an environment state whose label satisfies a given formula, and (ii) a metapolicy that learns

which option to take at each RM state. Since decisions are taken at two hierarchical levels (i.e. two

timescales), we refer to this approach as HRL (Hierarchical Reinforcement Learning).

Option Modeling

Given a reward machine M = 〈U ,P, ϕ, r, u0, uA, uR〉, the set of options in a non-terminal RM state

u ∈ U (i.e., with outgoing transitions to other states) is

Ωu = {ωu,φ | φ ∈ ϕ(u, u′), u′ ∈ U , φ 6= ⊥} ,

where ωu,φ is the option that aims to satisfy a non-false disjunct φ in a DNF formula from RM state

u ∈ U . Formally, each option is a tuple ωu,φ = 〈Iu, πφ, βu〉 where:1

• The initiation set Iu = S consists of all the states in the MDP; that is, any option available

in u can be started in any state.

• The policy πφ : S → ∆(A) maps an environment state into a probability distribution over

primitive actions with the aim of observing a label that satisfies φ.

• The termination condition βu : S → [0, 1] indicates that the option terminates if any formula

on an outgoing edge from u holds (i.e., the formula does not necessarily have to be φ). Formally,

βu(s) =

1 if l(s) |= ϕ(u, u′) for some u′ ∈ U ;

0 otherwise.

During the interaction with the MDP, the agent determines termination using the label re-

turned by the environment instead of evaluating the labeling function l itself. When the RM

does not perfectly capture histories, options may also terminate when the history is terminal

(i.e., the terminal indicator observed by the agent is true); for instance, this occurs when a

goal (resp. dead-end) trace does not end in the accepting (resp. rejecting) state during the

learning of an RM (see Section 4.3).

Note that even if two options share the same policy (i.e., they are associated with the same formula

φ), the termination function may differ since it depends on the RM state u.

In the case of a terminal RM state u (e.g., the accepting and rejecting states), decision-making

only occurs when the RM does not perfectly capture histories; for instance, when the traversal of

an incomplete trace finishes in the accepting or the rejecting states. The set of available options

Ωu = A is constituted by the primitive actions; hence, each option lasts one step. While this case

1For simplicity, the option components are only subscripted with the parameters of the option they depend on.
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may seem unlikely, it arises during RM learning (see Section 4.3) since a target RM is rarely learned

after a single attempt.

Policy Learning

In this approach, decisions are taken at two levels by learning two types of policies: (i) metapolicies

(i.e., policies over options) and (ii) option policies. We describe these policies for both the tabular

and the function approximation cases in the following paragraphs.

Metapolicies. A metapolicy Πu : S → ∆(Ωu) in RM state u ∈ U maps an environment state into

a probability distribution over the options available at u. These policies are learned using SMDP

Q-learning with ε-greedy exploration. Given an experience tuple 〈st, ωt, st+k〉, where ωt ∈ Ωu is an

option taken in RM state u at timestep t, the update rule is the following:

qu(st, ωt) = qu(st, ωt) + α

(
r + γk max

ω′∈Ωu′
qu′(st+k, ω

′)− qu(st, ωt)

)
, (4.1)

where k is the number of steps between st and st+k, r is the cumulative discounted reward over

this time, and u′ is the RM state when the option terminates. The discounted term of the target

depends on u′ (i.e., the policy in u depends on that in u′) and becomes 0 when sTt+k is true (i.e., the

history is terminal) since there is no applicable action thereafter.2 The reward is that emitted by the

reward-transition function of the RM; therefore, by Assumption 3.2.3, the cumulative discounted

reward r only has a non-zero value of γk−1 when u′ is the accepting state since a reward of +1 is

given after k − 1 steps in that situation.

In the function approximation case, the option-values are approximated through a DQN with

parameters θ and a target DQN with parameters θ−. All option experiences are stored in a single

replay buffer DM . The loss function performs an SMDP Q-learning update analogous to that in

Equation 4.1:

E〈st,u,ωt,st+k,u′〉∼U(DM )

[(
r + γk max

ω′∈Ωu′
q(st+k, u

′, ω′;θ−)− q(st, u, ωt;θ)

)2
]
.

Unlike the tabular case, the RM state is represented using a one-hot vector and passed as an input to

the DQN. The DQN outputs are determined by the formulas appearing in the RM and the number

of actions. For instance, given the RM in Figure 3.2, a value is output for each entry in {K∧¬o∧¬∗,
K∧o∧¬∗, o∧¬∗, ∗}∪{up, down, left, right}. High-level options and primitive actions are respectively

available at non-terminal and terminal RM states. Therefore, masking must be performed to avoid

selecting options unavailable in a given RM state.

Option Policies. An option policy πφ : S → ∆(A) aiming to satisfy a formula φ is not learned

using the rewards from the RM. Instead, we use a pseudoreward function rφ : 2P×{⊥,>}×{⊥,>} →

2If the RM perfectly captures any history and sT is >, u′ is either uA or uR.
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R defined as

rφ(L, sT , sG) =


rsuccess if L |= φ;

rdeadend if sT = > ∧ sG = ⊥;

rstep otherwise,

where rsuccess > 0 is given when the next label satisfies φ; rdeadend ≤ 0 is given if the history becomes

a dead-end history; and rstep ≤ 0 is given after every step otherwise. We remark on two subtleties

of this function:

• The second case incurs an assumption: dead-end histories depend on the last state, not on the

history of labels (e.g., all dead-end histories end on a decoration location in OfficeWorld).

When the assumption does not hold, learning a policy shared by several options might be

unstable since rewards become non-stationary.

• The last case includes the scenario where a formula different from φ labeling an edge from the

current RM state is satisfied.

The evaluation performed in Chapter 5 shows significant performance gains by penalizing the agent

for dead-end histories and after each step, i.e. setting rdeadend and rstep to be strictly lower than 0.

These policies are learned using Q-learning with ε-greedy exploration. The update rule for a

given formula φ and an experience tuple 〈st, at, st+1,Lt+1〉 is:

qφ(st, at) = qφ(st, at) + α

(
rφ(Lt+1, s

T
t+1, s

G
t+1) + γ max

a′∈A
qφ(st+1, a

′)− qφ(st, at)

)
, (4.2)

where the discounted term of the target becomes 0 when either the next label satisfies φ (i.e.,

Lt+1 |= φ) or the history is terminal (i.e., sTt+1 is true). Similarly to rφ, the latter case assumes

histories are terminal (i.e., goal or dead-end) depending on the last state only.3 Toro Icarte et al.

(2022) propose to model option policies considering the RM state, hindering the policy reusability

across options in the RM; nonetheless, their method does not need to make assumptions on the

histories. We refer the reader to Chapter 9 for an extended comparison.

Intra-option learning is easily applicable to update an option policy πφ′ while another policy

πφ is being followed; specifically, given an option policy πφ, an experience tuple 〈st, at, st+1,Lt+1〉
generated by this policy is used to update the value of 〈st, at〉 of another formula φ′ through Equa-

tion 4.2.

In the function approximation case, the action-value function of each formula φ in the RM is

approximated through a DQN with parameters θφ and a target DQN with parameters θ−φ . The

experiences produced by the induced policies are all pushed to a shared replay buffer D, hence

straightforwardly performing intra-option learning. The loss function is constructed analogously to

the Q-learning update in Equation 4.2:

E〈st,at,st+1,Lt+1〉∼U(D)

[(
rφ(Lt+1, s

T
t+1, s

G
t+1) + γ max

a′∈A
qφ(st+1, a

′;θ−φ )− qφ(st, at;θφ)

)2
]
.

3In our evaluation (see Chapter 5), the assumption is fulfilled by dead-end histories only (i.e., goal histories depend
on the full state-action sequence); however, policy learning is performed successfully across domains. The assumption
was present in the original work (Furelos-Blanco et al., 2021) but was not highlighted.
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Optimality

In the tabular case, since we optimize each subtask individually (i.e., regardless of the overall task),

the best we can hope to achieve is recursive optimality. If the action-value functions are approxi-

mated, policies may only be approximately optimal.

4.1.2 Learning an Option for each Reward Machine State (QRM)

Q-learning for reward machines (QRM), described in Section 2.1.5, can be framed in terms of options.

Instead of learning an option for each edge and a metapolicy for each RM state, QRM learns a single

policy over S×U by defining a single option for each RM state. Even though the policy is distributed

across the RM states, it is still coupled everywhere since the action-values are bootstrapped from an

RM state to the next one; therefore, each option’s policy chooses the action that appears globally

best, achieving global optimality in the limit (in the tabular case). In contrast, the previous method

(see Section 4.1.1) decouples option policies by making them independent of each other (i.e., each

attempts to satisfy a specific formula), which may speed up learning despite not guaranteeing global

optimality.

Option Modeling

Given a reward machine M = 〈U ,P, ϕ, u0, uA, uR〉, each state u ∈ U encapsulates an option ωu =

〈Iu, πu, βu〉 where:

• The initiation set Iu and the termination condition βu are defined as in Section 4.1.1 for

non-terminal RM states.

• The policy πu : S → ∆(A) selects the action that appears globally best at a given state

(i.e., the action that leads to the fastest achievement of the goal). In other words, the policy

does not attempt to satisfy a specific formula, but the formula that appears to be the best to

reach the task’s goal.

Policy Learning

The methods described in Section 2.1.5 are adapted to our setting by expressing the reward-transition

function as a mapping from RM state pairs to rewards, and using experiences 〈st, at, st+1,Lt+1〉. In

particular, Equation 2.1 becomes:

qu(st, at) = qu(st, at) + α

(
r(u, u′) + γ max

a′∈A
qu′(st+1, a

′)− qu(st, at)

)
, (4.3)

where u′ = δM (u,Lt+1) is the next RM state, and the discounted term becomes 0 when the history

is terminal (i.e., sTt+1 is true).

Optimality

In the tabular case, QRM converges to an optimal policy in the limit (Toro Icarte et al., 2018a,

Theorem 4.1). Global optimality is possible since action-values are bootstrapped from one RM state

to the next. Convergence is not guaranteed when the action-value function is approximated with

deep neural networks.
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Reward Shaping

A reward machine does not only reveal a task’s subgoals, it also gives an intuition of how far the

agent is from completing the task: the closer the agent is to the accepting state, the closer it is to

successfully completing the task. Therefore, we can provide the agent with an extra positive reward

signal when it gets closer to the accepting state.

The idea of giving additional rewards to guide the agent’s behavior is known as reward shaping.

Ng et al. (1999) propose a potential-based shaping function that provides the agent with additional

reward while guaranteeing that optimal policies remain unchanged:

f(st, at, st+1) = γΦ(st+1)− Φ(st),

where γ is the MDP’s discount factor and Φ : S → R is a real-valued function. The RM structure

can be exploited by defining f : U ×U → R in terms of the RM states instead (Camacho et al., 2019;

Furelos-Blanco et al., 2020):

f(u, u′) = γΦ(u′)− Φ(u),

where Φ : U → R. Consequently, Equation 4.3 is rewritten as:

qu(st, at) = qu(st, at) + α

(
r(u, u′) + f(u, u′) + γ max

a′∈A
qu′(st+1, a

′)− qu(st, at)

)
.

Since we want the value of f(u, u′) to be positive when the agent gets closer to the accepting state

uA, we define Φ as

Φ(u) = |U| − d(u, uA),

where |U| is the number of RM states, and d(u, uA) is a measure of the distance between u and

uA. If uA is unreachable from u, then d(u, uA) =∞.4 Note that |U| acts as an upper bound of the

maximum length (i.e., number of directed edges) in an acyclic path between u and uA. We consider

two distance measures between states: the length of the shortest path (dmin) and the length of the

longest acyclic path (dmax).

Example 4.1.1. Figure 4.1 shows the shaping rewards generated by the reward shaping function

using dmin (a) and dmax (b) with γ = 0.99 in the Coffee task’s RM illustrated in Figure 3.2. The

numbers inside the states are the values returned by Φ, whereas the numbers on the edges are those

returned by f . Note that (i) the number of RM states is |U| = 4 and (ii) the only difference in the

output of Φ occurs in the initial state.

4.2 Learning Reward Machines from Traces

In this section, we formalize the task of learning a reward machine from traces (Section 4.2.1) and

introduce a method for solving this task using ILASP (Section 4.2.2).

4.2.1 The Reward Machine Learning Task

We here formalize the task of learning a reward machine from traces.

4In practice, we use a sufficiently big number to represent ∞ (e.g., 1× 106).
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3.0

4.03.0 −∞

−0.03

−0.03

−0.03 −∞

−∞

+0.96

+0.96

(a) Using dmin.

2.0

4.03.0 −∞

−0.02

−0.03

+0.97 −∞

−∞

+0.96

+1.96

(b) Using dmax.

Figure 4.1: Shaping rewards produced by two distance metrics with γ = 0.99. States and edges are
labeled with the output from Φ and f , respectively.

Definition 4.2.1 (RM learning task). An RM learning task is a tuple TM = 〈U ,P, u0, uA, uR,Λ, κ〉,
where

• U ⊇ {u0, uA, uR} is a set of RM states, where u0 is the initial state, uA is the accepting state

and uR is the rejecting state;

• P is a set of propositions;

• Λ = ΛG ∪ ΛD ∪ ΛI is a set of traces; and

• κ is the maximum number of directed edges from a state u ∈ U to another state u′ ∈ U \ {u}.

An RM M is a solution of TM if and only if it is valid with respect to all the traces in Λ; that is,

if and only if it accepts all goal traces in ΛG, rejects all dead-end traces in ΛD, and does not accept

nor reject any incomplete trace in ΛI .

Note that (i) κ can be seen as the maximum number of disjuncts that a DNF formula ϕ(u, u′)

between two states u and u′ can have, and (ii) U is the set of states of the learned RM. For

simplicity, the RM learning task TM formalization always includes uA and uR in the set of RM

states U . However, in practice, uA is not included in U when the set of goal traces ΛG is empty;

likewise, uR is not included in U when the set of dead-end traces ΛD is empty. Removing these

states when unnecessary eases RM learning since the hypothesis space shrinks.

4.2.2 Solving the Reward Machine Learning Task with ILASP

Given an RM learning task TM , we map it into an ILASP learning task A(TM ) = 〈B,SM, 〈E+, ∅〉〉
and use the ILASP system to find a minimal inductive solution Aϕ(M) ⊆ SM that covers the

examples. We do not use negative examples (E− = ∅). We define the components of A(TM ) and

prove its correctness in the following paragraphs.

Background Knowledge

The background knowledge B = BU∪R is a set of rules that describe the general behavior of any RM.

The set of rules BU consists of state(u) facts for each RM state u ∈ U , while R is the set of general
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rules that defines how RMs process traces (see the definition in Section 3.3). Describing known

concepts through the background knowledge is useful to avoid learning everything from scratch. In

this case, we only need to learn the RM’s logical transition function, not the general definitions of

how RMs work (i.e., the rules in R).

Hypothesis Space

The hypothesis space SM contains all ed and ϕ̄ rules that characterize a transition from a non-

terminal state u ∈ U \ {uA, uR} to a different state u′ ∈ U \ {u} using edge i ∈ {1, . . . , κ}. Formally,

it is defined as

SM =


ed(u, u′, i). u ∈ U \

{
uA, uR

}
,

ϕ̄(u, u′, i, T) : - prop(p, T), step(T). u′ ∈ U \ {u} ,
ϕ̄(u, u′, i, T) : - not prop(p, T), step(T). i ∈ {1, . . . , κ}, p ∈ P

 .

Loop transitions are not included since they are unsatisfiable formulas (see Section 3.2). Note that

it is possible to learn unlabeled transitions, which are taken unconditionally (that is, regardless of

the current label). For example, for a transition from u to u′ using edge i, an inductive solution

may only include ed(u, u′, i) and not ϕ̄(u, u′, i, T).

As mentioned before, the learner induces the negation ϕ̄ of a logical transition function ϕ.5 A

different hypothesis space where the learned rules characterize ϕ directly could have been defined.

However, this requires guessing the maximum number of literals that label a transition between

two states.6 Therefore, we represent RMs using ϕ̄ and instead of imposing a maximum size for the

conjunctive formulas, we impose a limit (κ) on the number of edges from one state to another.

It is important to realize that the learned hypothesis is denoted by Aϕ(M) and not A(M) (see

Definition 3.3.2). The set of RM states is given in the background knowledge B, and the hypothesis

space SM only contains transition rules. Hence, the hypothesis is a smallest subset of transition

rules that covers all the examples. Since the set of RM states is provided through the background

knowledge, a minimal RM (i.e., an RM with the minimum number of states) is only guaranteed to be

learned when the set of RM states is the minimal one. The mechanism that interleaves reinforcement

learning and RM learning described in Section 4.3 ensures that the learned RM is minimal for a

specific value of κ.

Example Sets

Given a set of traces Λ = ΛG ∪ ΛD ∪ ΛI , the set of positive examples is defined as

E+ = {〈e∗,A(λ)〉 | ∗ ∈ {G,D, I}, λ ∈ Λ∗},

where

• eG = 〈{accept}, {reject}〉,

5Remember that the set of rules R introduced in Section 3.3.2 defines ϕ in terms of ϕ̄.
6This is because ILASP has the maximum length of learnable rules as a parameter. This is a problem to enforce

determinism (see Section 3.3.4) since we do not know how many literals are going to be needed to make two formulas
mutually exclusive. Besides, allowing an arbitrarily large number of literals to overcome the problem massively
increases the hypothesis space size.
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• eD = 〈{reject}, {accept}〉, and

• eI = 〈{}, {accept, reject}〉

are the partial interpretations for goal, dead-end and incomplete traces. The accept and reject

atoms express whether a trace is accepted or rejected by the RM; hence, goal traces must only

be accepted, dead-end traces must only be rejected, and incomplete traces cannot be accepted or

rejected. The context of each example is the set of ASP facts A(λ) that represents the corresponding

trace (see Definition 3.3.1).

Correctness of the Learning Task

The following theorem captures the correctness of the ILASP learning task.

Theorem 4.2.1. Given an RM learning task TM = 〈U ,P, u0, uA, uR,Λ, κ〉, a reward machine M is

a solution of TM if and only if Aϕ(M) is an inductive solution of A(TM ) = 〈B,SM, 〈E+, ∅〉〉.

Proof. Assume M is a solution of TM .

⇐⇒ M is valid with respect to all traces in Λ (i.e., M accepts all traces in ΛG, rejects all traces

in ΛD and does not accept nor reject any trace in ΛI).

⇐⇒ By Proposition 3.3.1, for each trace λ∗ ∈ Λ∗ where ∗ ∈ {G,D, I}, A(M) ∪ R ∪ A(λ∗) has

a unique answer set A and (i) accept ∈ A if and only if ∗ = G, and (ii) reject ∈ A if and only if

∗ = D.

⇐⇒ For each example e ∈ E+, R∪ A(M) accepts e.

⇐⇒ For each example e ∈ E+, B ∪ Aϕ(M) accepts e. The two programs are identical:

R∪ A(M) = R∪ AU (M) ∪ Aϕ(M)

= R∪ BU ∪ Aϕ(M)

= B ∪ Aϕ(M).

⇐⇒ Aϕ(M) is an inductive solution of A(TM ).

Enforcement of Structural Properties

The formalization of the RM learning task potentially results in the induction of a non-deterministic

RM; in addition, several symmetric solutions might be considered during the search. The learned

ASP representation of the RM can be mapped into an equivalent factual representation to enforce

determinism (Section 3.3.4) and a canonical indexing of states and edges (Section 3.4). In other

words, those RMs that violate the expected structural properties are discarded as solutions to the

RM learning task; unfortunately, performing the mapping for every produced candidate solution

followed by the verification is prohibitively expensive. However, ILASP enables the mapping to be

included in the learning task through meta-program injection (Law et al., 2018), enabling the learner

to verify the properties during the search; consequently, the search space is shrunk and the learning

of the RMs is performed faster.

We emphasize that the assumptions on the applicability of the proposed symmetry breaking

mechanism hold during learning. As described in Section 3.4.3, Assumption 3.4.2 is enforced through

the constraints outlined there. Assumption 3.4.3 holds since (i) the learned RMs are deterministic,
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guaranteeing that edges from a state to two different states are always different, and (ii) ILASP

induces a minimal hypothesis (i.e., a minimal set of transition rules), thus the learned RMs will

never have two equal edges from one state to another.

4.3 Interleaved Learning

In this section, we describe the ISA (Induction of Subgoal Automata for Reinforcement Learning)

algorithm,7 which interleaves reinforcement learning and the learning of the RMs. Given a labeled

MDP 〈S,A, p, r, γ,P, l, τ〉 and a maximum number of edges κ between two states, ISA aims to learn

a reward machine M = 〈U ,P, ϕ, r, u0, uA, uR〉 from the experience of a reinforcement learning agent.

In the limit, the learned machine M has the fewest possible states given κ and is valid with respect

to all the traces observed by the agent.

4.3.1 Algorithm

Algorithm 1 contains the pseudocode describing how RL and RM learning are interleaved. The

pseudocode applies to both methods described in Section 4.1 and consists of two functions related

to RM learning:

• The IsCounterexample function (lines 26–29) checks whether the current RM state u is

consistent with s = 〈s, sT , sG〉. It returns true in the following cases:

– the history is a goal and u is not the accepting state (sT = > ∧ sG = > ∧ u 6= uA), or

– the history is a dead-end and u is not the rejecting state (sT = >∧ sG = ⊥∧u 6= uR), or

– the history is not terminal and u is either the accepting or rejecting state (sT = ⊥∧ u ∈
{uA, uR}).

• The OnCounterexampleFound function (lines 30–37) determines what to do when a trace

λ is not correctly recognized by the current RM:

(a) Add λ to the corresponding set of traces (line 31):

– to the set of goal traces ΛG if the history is a goal (sT = > ∧ sG = >), or

– to the set of dead-end traces ΛD if the history is a dead-end (sT = > ∧ sG = ⊥), or

– to the set of incomplete traces ΛI if the history is non-terminal (sT = ⊥).

(b) Run the RM learner (lines 32–36). If the RM learning task is unsatisfiable, it means that

the hypothesis space does not include the RM we are looking for. Therefore, we add

a new state to U .8 We adopt this iterative deepening strategy to find a minimal RM

(i.e., with the fewest states) such that there at most κ edges from one state to another.

(c) When a new RM is learned, the action-value functions are reset (line 37). We later explain

what resetting these functions means for the two RL algorithms we use.

We now describe the main function of the algorithm:

7Subgoal automata (Furelos-Blanco et al., 2020, 2021) are finite-state machines similar to the reward machines
used in this thesis but without a reward-transition function; thus, for historical reasons, we have maintained the name
of the algorithm.

8Non-special states (i.e., not u0, uA or uR) are indexed from 1 upwards (u1, u2, . . .).
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Algorithm 1 ISA Algorithm

Input: A labeled MDP environment Env, an initial state u0, an accepting state uA, a rejecting
state uR, a set of propositions P, and maximum number of edges between two states (κ).

1: U ← {u0, uA, uR}
2: M ← 〈U ,P, ϕ, r, u0, uA, uR〉
3: Λ← {} . Set of counterexamples
4: InitValueFunctions(M)
5: for l = 0 to num episodes do
6: s,L ← Env.Init()
7: u← δM (u0,L)
8: λ← 〈L〉 . Initialize trace
9: if IsCounterexample(s, u) then

10: OnCounterexampleFound(λ)
11: u← δM (u0,L)

12: t← 0
13: while t < max episode length ∧ sT = ⊥ do . Run episode
14: a← SelectAction(s, u)
15: s′,L′ ← Env.Step(a)
16: u′ ← δM (u,L′)
17: λ← λ⊕ 〈L′〉
18: if IsCounterexample(s′, u′) then
19: OnCounterexampleFound(λ)
20: break
21: else
22: UpdateValueFunctions(s, a, s′, L′)
23: s← s′

24: u← u′

25: t← t+ 1

26: function IsCounterexample(s, u)
27: return (sT = > ∧ sG = > ∧ u 6= uA) ∨
28: (sT = > ∧ sG = ⊥ ∧ u 6= uR) ∨
29: (sT = ⊥ ∧ u ∈ {uA, uR})
30: function OnCounterexampleFound(λ)
31: Λ← Λ ∪ {λ}
32: is unsat← >
33: while is unsat do
34: M, is unsat← LearnRewardMachine(U , u0, uA, uR,Λ, κ)
35: if is unsat then
36: U ← U ∪ {u|U|−2}
37: ResetValueFunctions(M)
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1. Initially, the set of states is formed by the initial state u0, the accepting state uA and the

rejecting state uR (line 1). The RM is initialized such that it does not accept nor reject

anything; that is, there are no edges between the states in U (line 2). The set of counterexample

traces and the value functions are also initialized (lines 3–4).

2. When an episode starts, the current RM state u is u0. One transition is then applied using the

initially observed label L (lines 6–7). For instance, if the agent initially observes {K} when

performing the OfficeWorld’s Coffee task, then u must be the state where the agent has

already observed K (see Figure 3.2). The episode trace λ is initialized with the initial label L
(line 8). If a counterexample is detected at the beginning of the episode (line 9), a new RM is

learned (line 10), the RM state is reset (line 11) and the episode continues.

3. At each episode’s step, the agent selects an action a in state s (line 14) and applies it in the

environment (line 15). Based on the new label L′, we get the next state u′ (line 16) and

update the trace λ (line 17). If a counterexample trace λ is found (line 18), a new RM is

learned (line 19) and the episode ends (line 20). Otherwise, the value functions are updated

(line 22), and the episode continues.

4.3.2 Properties

Theorem 4.3.1 shows that if the target RM is in the hypothesis space, there will only be a finite

number of learning steps in the algorithm before it converges to such RM (or an equivalent one).

Theorem 4.3.1. Given a target RM M∗, there is no infinite sequence ρ of RM-counterexample

pairs 〈Mi, ei〉 such that ∀i: (1) Mi covers all examples e1, . . . , ei−1, (2) Mi does not cover ei, and

(3) Mi is in the finite hypothesis space SM.

Proof. By contradiction. Assume that ρ is infinite. Given that SM is finite, the number of possible

RMs is finite. Hence, some RM M must appear in ρ at least twice, say as Mi = Mj , i < j. By

definition, Mi does not cover ei and Mj covers ei. This is a contradiction.

The iterative deepening strategy on the number of states, as mentioned in Section 4.3.1, ensures

the learned RMs are minimal for a specific value of κ.

4.3.3 Implementation

In the following paragraphs, we describe important aspects of the algorithm’s implementation. First,

we describe how the action-value functions are managed for the two algorithms we consider. Second,

we introduce two optimizations to make RM learning more efficient.

Management of the Action-Value Functions

A critical aspect of the algorithm is how action-value functions are initialized, updated, and reset

when a new RM is learned. In the tabular case, all state-action (and state-option in HRL) values are

initialized to 0. The action-value functions are updated using the rules of the respective algorithms

(see Sections 4.1.1–4.1.2). For generality, Algorithm 1 omits the metapolicies update from HRL,

which occurs when the selected option terminates. Since an option terminates when the episode
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ends or the RM has changed, the update is performed at the end of each step (between lines 22 and

23) if necessary.

Transferring policies (or, more precisely, value functions) from earlier RMs is beneficial when a

new RM is learned; however, there are situations where it is not feasible. On the one hand, the

HRL metapolicies and the QRM policies are not transferred since they depend on the global RM

structure (i.e., they respectively select options and actions toward reaching the accepting state in

the fewest steps possible), which changes throughout learning. The corresponding value functions

are thus reset every time a new RM is learned; however, the reward shaping mechanism introduced

for QRM and the independently trained options for HRL can alleviate this problem. On the other

hand, in the case of HRL, the action-value functions for all the options used throughout learning

are permanently stored and reused when the corresponding formulas appear. The management of

these functions involves two decisions regarding:

1. The updating regime. There are two alternatives: (i) update all the stored functions, and

(ii) update only the functions for the current RM formulas. While (i) is more costly, it en-

sures that all value functions are constantly updated and immediately reusable in the future.

Experimentally, we use (i) for the tabular case since it does not incur a significant computa-

tional cost; in contrast, we employ (ii) in the function approximation case since updating each

function is slower than in the tabular setting.

2. The reuse for new similar formulas. Given that value functions are linked to propositional

formulas, the value function for a newly observed formula can be initialized from one linked to

a similar formula. The number of matching positive literals determines the similarity between

two formulas and, in case of a tie, the formula whose function has been updated the most is

chosen. Experimentally, the number of matching positive literals works better than the total

number of matching literals. We hypothesize that considering negative literals is detrimental

since they often emerge from the determinism constraints; that is, they do not represent critical

subgoal information, unlike positive literals.

Optimizations

To make the RM learning phase more efficient, we employ the following optimizations in practice:

1. The agent does not learn an RM until a goal trace is observed. Experimentally, when dead-end

histories are frequently observed, the learner constantly finds counterexamples that refine paths

to the rejecting state. Starting to learn RMs after observing a goal trace is (experimentally)

more efficient.

2. The rejecting state uR is not included in the set of states U if the set of dead-end traces is

empty, as described in Section 4.2.1; hence, the hypothesis space does not contain unnecessary

rules that may slow down learning.

4.4 Summary

In this chapter, we presented ISA, an algorithm that interleaves the exploitation and learning of a

minimal RM for a given task. We outline two exploitation methods formalized using the options
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framework: QRM, an existing method that learns policies at a single timescale, and HRL, which

learns policies at two timescales. To provide QRM with a denser reward signal, we proposed a

reward shaping method based on the structure of the RMs. The learning of reward machines is

accomplished using ILASP, an inductive logic programming system. ILASP learns RMs represented

using ASP and leverages a symmetry breaking method that prunes equivalent solutions from the

search space to improve learning performance. Both the ASP representation of the RMs and the

symmetry breaking method were introduced in the previous chapter.



Chapter 5

Evaluation of Reward Machines

In this chapter, we evaluate the effectiveness of ISA in different domains. Our analysis assesses how

the behavior of the RL agent and the task being learned affect RM learning and vice versa. First,

we describe the general aspects of our evaluation methodology (Section 5.1). Second, we make a

thorough analysis of the performance of our approach using several domains (Sections 5.2–5.4). We

conclude by summarizing our findings across experiments (Section 5.5). The code is available at

https://github.com/ertsiger/induction-subgoal-automata-rl.

5.1 Experimental Setup

In this section, we describe our experimental setup where the learned RMs must generalize to differ-

ent instances (e.g., grid layouts) of a given task (Section 5.1.1). We also introduce some restrictions

on the learned RMs (Section 5.1.2) and a nomenclature for the RL algorithms we evaluate (Sec-

tion 5.1.3). Finally, we explain how the results are reported in the following sections (Section 5.1.4).

5.1.1 Generalization

We consider the problem of learning an RM given a set of instances, each a labeled MDP, for a

given task (e.g., Coffee). Instances differ in the labeling function l and the termination function

τ ; nonetheless, even though τ is different, traces are commonly categorized across instances. For

example, each instance of OfficeWorld has a different grid layout (hence, a different l and a

different τ for a given task), but any trace where o is observed after K is considered a goal trace for

the Coffee task regardless of the instance.

The purpose is to learn RMs that generalize across instances. For example, the coffee (K) and

the office (o) may be in the same location in OfficeWorld; therefore, as shown in Figure 3.2, the

learned RM should cover both when K and o are together and when they are not. In general, since

a minimal RM is learned from positive examples only (see discussion in Chapter 10), using diverse

sources of traces helps avoid overgeneralization. Figure 5.1 displays a grid that produces the shown

RM for Coffee if used alone. Since the agent ( ) cannot see any trace that reaches o without

observing K, it does not learn that K is needed to achieve the goal.

In the tabular case, a general RM is learned by extending Algorithm 1 such that a full episode is

iteratively run for each instance until a maximum number of episodes per instance is reached. The
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D ∗ ∗ C

K
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∗ B ∗
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u0

uA

o

Figure 5.1: Example of an OfficeWorld grid whose traces lead to an overgeneral RM for Coffee.

reason for extending the algorithm is that different policies are learned for each instance. In this case,

the learned policies differ for each instance despite sharing the RM. In the function approximation

case, the algorithm is directly applied since the instance changes every time the environment is

reset, and policies generalize to the different instances. A maximum episode length N is enforced to

guarantee all episodes terminate in a reasonable amount of time.

To reduce our bias on the RM learning process, the instance sets are randomly generated instead

of handcrafted; thus, (i) there is no guarantee that certain labels are observable, and (ii) the difficulty

of each instance is not fully controlled. Given these two issues, we evaluate how different sets change

RL and RM learning (see Section 5.2.5). In the case of (ii), RM learning may be started from traces

observed in the easier instances, and the (intermediate) learned RMs may be automatically exploited

in the more complex instances.

5.1.2 Restrictions

The following restrictions can be imposed on the factual representation of the learned RM, the traces,

and the proposition set to speed up the learning of the RMs. We describe the specific motivation

behind them and their ASP implementation where applicable.

Avoid Learning Purely Negative Formulas

We assume that the non-occurrence of certain propositions cannot exclusively characterize subgoals;

that is, the formula labeling an edge cannot be formed only by negated propositions. The minimal

RMs for the tasks considered here comply with this assumption.

The following constraint encodes the assumption by enforcing a proposition to occur positively

whenever a proposition appears negatively in a given edge:

: - neg(X, Y, E, ), not pos(X, Y, E, ).

Acyclicity

There are tasks whose minimal RMs do not contain cycles (i.e., a previously visited state cannot

be revisited). The reward machines for the tasks we consider (including the OfficeWorld tasks
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introduced so far) belong to this class; thus, the search space can be made smaller by ruling out

solutions containing cycles.

The following set of rules enforces acyclicity. The path(u, u′) atoms indicate there is a directed

path (i.e., a sequence of directed edges) from state u to state u′. The first rule states that there is a

path from state X to state Y if there is an edge from X to Y. The second rule indicates that there is

a path from X to Y if there is an edge from X to an intermediate state Z from which there is a path

to Y. Finally, the third rule rules out the answer sets with a path from X to Y and vice versa.
path(X, Y) : - ed(X, Y, ).

path(X, Y) : - ed(X, Z, ), path(Z, Y).

: - path(X, Y), path(Y, X).


Trace Compression

The counterexample traces employed by ISA depend on the agent behavior. While the agent has

not managed to reach the goal, its behavior is random; consequently, the counterexamples provided

to the RM learner can be long and include many irrelevant labels to the task at hand. As shown

later, these factors negatively impact the time required to learn an RM.

We define a subtype of label trace called compressed label trace (or compressed trace), which is

built from a label trace based on the following assumptions:

1. Empty labels are irrelevant.

2. Observing the same label twice or more in a row is equivalent to observing it once.

Definition 5.1.1 (Compressed label trace). A compressed label trace λ̂ = 〈L̂0, . . . , L̂m〉 is the result

of removing the empty labels and, thereafter, removing contiguous equal labels from a label trace

λ = 〈L0, . . . ,Ln〉.

Example 5.1.1. The goal trace λ = 〈{}, {K}, {K}, {}, {K}, {}, {}, {o}〉 for Coffee is compressed

into λ̂ = 〈{K}, {o}〉.

As shown in Section 5.2.5, compressed traces speed up RM learning; however, their applicability

is limited to tasks where the assumptions above hold. For instance, these traces cannot be used to

learn RMs for tasks where every label is essential, such as “observe K twice in a row”; in contrast,

they are applicable in the tasks considered in the experiments.

The learning of the RMs is agnostic to the type of trace; thus, no change is required in encoding

the learning tasks. Nevertheless, since compressed traces lose the information about the number of

performed steps and contain no empty labels, unlabeled transitions are meaningless; therefore, we

rule out RMs with unlabeled edges using the following constraint when trace compression is enabled:

: - ed(X, Y, E), not pos(X, Y, E, ), not neg(X, Y, E, ).

This constraint rules out any inductive solution where an edge from X to Y with index E is not labeled

by a positive or a negative literal.

In the case of the RL component, the use of compressed traces changes the RMs’ traversal. Since

empty labels and contiguous duplicated labels are ignored, the state-transition function δM of a
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reward machine M is only queried when the current label is (i) not empty and (ii) different from

the previous label. Otherwise, the agent remains in the same RM state.

Restricted Proposition Set

To further simplify the traces, these can be defined only in terms of the propositions relevant to

the task at hand. For example, if the task is Coffee, the proposition set is P̂ = {K, o, ∗} instead

of P = {K,B, o, A,B,C,D, ∗}. This simplifies RM learning since the hypothesis space becomes

smaller, and ILASP does not have to discern which propositions are relevant.

5.1.3 Reinforcement Learning Algorithms

We use the following nomenclature for the different RL algorithms applied in the experiments:

• HRL: HRL where rsuccess = 1.0, rdeadend = 0.0 and rstep = 0.0.

• HRLG: HRL where rsuccess = 1.0, rdeadend = −N and rstep = −0.01. Remember that N

denotes the maximum episode length.

• QRM: QRM without reward shaping.

• QRMmin: QRM with reward shaping based on the length of the shortest path to the accepting

state (dmin).

• QRMmax: QRM with reward shaping based on the length of the longest acyclic path to the

accepting state (dmax).

5.1.4 Reporting Results

We report results using tables and figures that result from averaging 20 independent runs, each using

a different random seed. All experiments were run on 3.40GHz Intel® Core™ i7-6700 processors.

The reward machines were learned using ILASP2, with each individual learning task having a 2-hour

timeout.

In the tables, we report the following RM learning metrics where the learner has not timed out

and at least one RM has been learned:

• Total time (in seconds) used to run the RM learner.

• Number of examples used to learn the final RM.

• Length of the examples used to learn the final RM.

Metrics are reported as µ ± σ, where µ is the average, and σ is either the standard error (for the

total time and the number of examples) or the standard deviation (for the example length since

it is computed across all runs). We mark with an asterisk (*) cases where either no RM has been

learned1 or the learner has timed out between 1 and 10 runs. A dash (–) denotes that the number

of these cases is higher than 10.

1Remember that RMs are started to be learned once a goal trace is observed (see Section 4.3.3).
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The figures show the average undiscounted return across instances and runs. Each point of the

learning curve represents the undiscounted return obtained by the greedy policy in an episode. The

greedy policy is evaluated for one episode after every training episode by default. The dotted vertical

lines correspond to episodes where an RM was learned. When the learner times out, the reward is

set to 0 for the entire interaction.

5.2 Experiments in OfficeWorld

The OfficeWorld domain (Toro Icarte et al., 2018a), introduced in Example 2.1.2, consists of a

9× 12 grid illustrated in Figure 2.3. The proposition set is P = {K,B, o, A,B,C,D, ∗}.

5.2.1 Instance Generation

The grid contains a proposition of each type except for K and ∗, which appear 2 and 6 times,

respectively. The agent and the propositions are randomly placed in the grid such that:

• The agent cannot be initially placed with decorations ∗ or propositions A−D.

• The decorations ∗ do not share a location with any other proposition.

• The decorations ∗ and propositions A − D cannot be placed next to each other (including

diagonals) nor in locations that connect two rooms such as 〈1, 2〉 and 〈1, 3〉.

• Propositions A−D and the office o cannot be in the same location.

Note that (i) K, B, and o can be in the same location, and (ii) K and B can share a location with

propositions A−D.

5.2.2 Tasks

The tasks are those introduced in Example 2.1.2. Their respective RMs are different and incremen-

tally challenging to learn:

• The Coffee task has 2 subgoals and is represented by a 4-state minimal RM.

• The CoffeeMail task has 3 subgoals and is represented by a 6-state minimal RM.

• The VisitABCD task has 4 subgoals and is represented by a 6-state minimal RM.

In the tasks considered in this chapter, the number of subgoals is the number of directed edges in

the longest acyclic path from the initial state to the accepting state in the minimal RM. Generally,

the longer the subgoal sequence is, the harder it becomes to achieve the goal. We refer the reader

to Appendix A.1 for illustrations of the RMs considered in these experiments.

5.2.3 Hyperparameters

Table 5.1 shows the hyperparameters used throughout these experiments, where α, ε and γ are used

for both the metapolicies and option policies across all HRL variants.
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Table 5.1: Hyperparameters used in the OfficeWorld experiments.

Learning rate α 0.1
Exploration rate ε 0.1
Discount factor γ 0.99
Number of episodes per instance 10,000
Avoid learning purely negative formulas 3
Number of instances 50
Maximum episode length N 250
Trace compression 3
Enforce acyclicity 3
Number of disjuncts κ 1
Use restricted proposition set 7

5.2.4 Results

Figure 5.2 shows how the learning curves for interleaved RM learning approaches (ISA-HRL, ISA-

QRM) compare to those obtained by approaches exploiting handcrafted RMs (HRL, QRM). We

observe the following:

• The algorithms using auxiliary guidance (HRLG, QRMmin, QRMmax) converge faster than

their respective standard versions (HRL and QRM). Using auxiliary reward signals helps ex-

plore the state space more effectively, which results in observing counterexamples (and, hence,

learning RMs) earlier.

• QRMmax converges faster than QRMmin except in VisitABCD, where the curves match be-

cause there is a single path to the accepting state (i.e., the auxiliary rewards are the same).

As shown in Example 4.1.1, QRMmax provides a positive reward for any path that enables the

agent to approach the accepting state; in contrast, QRMmin only provides a positive signal for

the shortest path(s). If the shortest path is not available in a certain grid (e.g., when label

{K, o} is not observable), QRMmin gives a negative reward for choosing the only available path

to the accepting state and, as a result, convergence is slower than for QRMmax.

• HRL converges faster than QRM. In the absence of reward shaping, QRM needs to satisfy

a formula on an edge to the accepting state to start inducing changes in the action-value

functions of the different RM states; in contrast, HRL independently updates the action-value

functions of each formula without having to reach the accepting state.

• Approaches involving RM learning perform closely to those exploiting handcrafted RMs. Nat-

urally, their convergence is delayed since an RM is not exploited from the first episode (e.g., a

stable RM is found after several episodes in VisitABCD).

Figure 5.3 shows the impact of RM learning on the HRL and QRM curves of the Coffee task in

a single run. While HRL quickly recovers its performance after learning an RM, QRM requires a few

episodes. Indeed, remember that an HRL agent forgets the metapolicies but keeps the action-value

functions of the option policies unchanged, and reuses the action-value functions of existing formulas

for new similar ones; in contrast, QRM forgets everything it learned.

Table 5.2 shows the RM learning metrics for the presented OfficeWorld tasks using HRLG.

We observe that:
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Figure 5.3: Example of the impact that interleaved RM learning has on the learning curves of the
Coffee task. An RM is learned around episode 300. While HRL quickly recovers since it only
forgets the metapolicies, QRM needs more episodes because it forgets everything.

• The running time increases with the number of subgoals. Learning an RM for VisitABCD

takes (on average) more time than one for CoffeeMail, even though both are characterized

by minimal RMs with the same number of states.

• The number of examples increases with the number of subgoals. The number of goal trace

examples is approximately the number of paths to the accepting state; for instance, in Vis-

itABCD there is only one such path, so the number of goal trace examples is approximately

1.2 In contrast, the propositions that label the RM for CoffeeMail can appear jointly or not;

consequently, there are more paths to the accepting state, and the number of goal examples

increases. Furthermore, while there is a relationship between the number of goal examples and

the number of paths to the accepting state, we do not observe such a relationship between the

number of dead-end examples and the number of paths to the rejecting state. The number of

dead-end and incomplete examples is higher than that of goal examples; thus, we hypothesize

that these examples are mainly used to refine the RM given the set of goal examples.

• The example length increases with the number of subgoals. Intuitively, the more subgoals,

the longer the agent needs to interact with the environment to achieve the goal; therefore, the

observed counterexamples tend to be longer for tasks with more subgoals.

5.2.5 Ablations

This section analyzes how the RL and RM learning hyperparameters impact ISA’s performance.

Table 5.3 shows the hyperparameters used throughout these experiments, dividing those that remain

unchanged from those that vary across experiments.

2The number of goal trace examples can be higher than 1 for VisitABCD if the first goal trace example is complex
(e.g., longer than needed or with many unnecessary propositions), thus making the subgoals unclear. In such cases,
a simpler goal trace might later be found as a counterexample.
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Table 5.2: RM learning metrics for the OfficeWorld tasks using HRLG.

Time (s.) # Examples Example Length

All G D I

Coffee 0.4± 0.0 8.7± 0.4 2.4± 0.1 3.0± 0.1 3.2± 0.3 2.8± 2.1
CoffeeMail 18.9± 3.3 29.0± 1.5 3.9± 0.3 9.3± 0.6 15.8± 1.0 4.0± 2.6
VisitABCD 163.2± 44.3 54.9± 3.8 1.6± 0.1 15.2± 0.9 38.1± 3.1 5.5± 3.1

Table 5.3: Hyperparameters used in the OfficeWorld ablation experiments. The top of the table
lists the hyperparameters that remain unchanged, while the bottom lists those that change across
experiments.

Learning rate α 0.1
Exploration rate ε 0.1
Discount factor γ 0.99
Number of episodes per instance 10,000
Avoid learning purely negative formulas 3
RL algorithm HRLG

Number of instances 50
Maximum episode length N 250
Trace compression 3
Enforce acyclicity 3
Number of disjuncts κ 1
Use restricted proposition set 7

Instances and Maximum Episode Lengths

We study the performance variability across instance sets, the number of instances within each

set, and maximum episode lengths. We consider two 100-instance sets, I1 = {I1,1, . . . , I1,100} and

I2 = {I2,1, . . . , I2,100}. We denote by Ikj = {Ij,1, . . . , Ij,k} ⊆ Ij the subset of the first k instances

from the j-th set. These experiments are performed with k ∈ {10, 50, 100} and N ∈ {100, 250, 500}.
Given instance set I1, Figure 5.4 shows the learning curves for the different combinations of

instance subsets and steps. We make the following observations:

• The lowest maximum episode length (N = 100) works fine when the goal is easy to achieve (i.e.,

there are few subgoals, like in Coffee). As the number of subgoals grows, N needs to increase

to achieve the goal. If N is not high enough, there is a low chance that the agent observes the

counterexamples required to find the target RM. Remember that the agent needs to achieve

the goal at least once to learn an RM that can be exploited. In the case of VisitABCD, we

observe barely any convergence when N = 100 because no RM is learned. Even when the

number of instances is high (100), a goal trace to start RM learning is only found in 9 out of

20 runs.

• Small instance sets are sufficient to learn an RM and policies that achieve the goal in Coffee;

however, in tasks involving more subgoals, convergence is faster for larger sets (50 or 100) than

for small ones (10). For example, RMs for VisitABCD are rarely learned from 10 instances

for any maximum episode length. Increasing the number of instances increases the chance that

easier grids are included in the set and, in turn, the chance of observing counterexamples to

start learning RMs.
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Figure 5.4: Learning curves for different combinations of instance sets (I10
1 , I50

1 , I100
1 ) and maximum

episode lengths (100, 250, 500).

• Small values of N and fewer instances often cause RM learning to occur throughout the entire

interaction, whereas higher values of N and large instance sets concentrate learning early in

the interaction. When N is small, the chance of observing a counterexample is lower since the

interaction is shorter, which is detrimental in combination with small sets containing instances

where the goal is hard to achieve (e.g., if the propositions are sparsely distributed in the grid).

A high value of N seems to be the best choice to ensure that goal traces are observed; however,

such choice produces longer traces and makes RM learning more complex since (i) the chance of

observing irrelevant propositions to the task at hand increases (i.e., the system has to learn they

are unimportant) and (ii) it is harder to figure out the order in which subgoals must be observed.

Table 5.4 shows the total RM learning time, while Table 5.5 shows the number of examples needed

to learn the last RM in each run. The following is observed from these tables:

• Running times generally increase with the maximum episode length. Table 5.6 contains the

example lengths for I50
1 , showing that the longer the episode, the longer the counterexamples.
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Table 5.4: Total RM learning time in seconds for different combinations of instance sets (I10
1 , I50

1 ,
I100
1 ) and maximum episode lengths (100, 250, 500).

I10
1 I50

1 I100
1

N = 100 N = 250 N = 500 N = 100 N = 250 N = 500 N = 100 N = 250 N = 500

Coffee 0.3± 0.0 0.3± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.6± 0.0 0.4± 0.0 0.5± 0.0 0.5± 0.0
CoffeeMail 5.9± 1.5 4.2± 1.1 9.4± 3.3 7.8± 1.5 18.9± 3.3 49.1± 12.0 9.2± 1.2 29.1± 9.4 64.3± 15.3
VisitABCD – – 2966.4± 1323.9* – 163.2± 44.3 311.9± 63.4 – 230.7± 99.9 230.8± 48.2

Table 5.5: Number of examples needed to learn the last RM for different combinations of instance
sets (I10

1 , I50
1 , I100

1 ) and maximum episode lengths (100, 250, 500).

I10
1 I50

1 I100
1

N = 100 N = 250 N = 500 N = 100 N = 250 N = 500 N = 100 N = 250 N = 500

Coffee 5.8± 0.3 7.0± 0.3 7.4± 0.3 8.4± 0.3 8.7± 0.4 10.7± 0.5 8.6± 0.4 9.6± 0.5 9.4± 0.4
CoffeeMail 24.2± 1.5 20.6± 1.5 24.4± 1.7 24.8± 1.6 29.0± 1.5 33.0± 1.5 29.6± 1.2 35.7± 1.2 35.9± 1.6
VisitABCD – – 86.0± 12.0* – 54.9± 3.8 50.6± 3.5 – 55.2± 6.0 49.9± 2.5

• Running times increase as the instance set becomes larger, specifically when changing from

I10
1 to I50

1 due to some labels occurring within the latter and not in the former. For instance,

label {K, o} is only observable in I50
1 and I100

1 but not in I10
1 ; hence, time is spent on learning

the K ∧ o transition for Coffee and CoffeeMail.

• The number of examples is similar across instance sets. There is only a noticeable difference

between I10
1 to I50

1 because the latter includes labels that do not happen in the former, as

explained before. These differences do not occur for VisitABCD because there is a single

path to the accepting state.

• The running time and the number of examples increase with the number of subgoals, as shown

in Section 5.2.4. Table 5.6 shows that the example length is longer for the tasks with more

subgoals, which affects the time needed to learn the RMs.

We now briefly examine the results for the instance set I2. Figure 5.5 displays the learning curves

for different combinations of instance subsets and values of N . Table 5.7 shows the RM learning

time, whereas Table 5.8 contains the number of examples needed to learn an RM for different subsets

of tasks and maximum episode lengths (N). Table 5.9 shows the example length of each trace type

for different values of N . Table 5.10 contains the number of examples needed to learn the last

RM in a specific setting. In qualitative terms, the changes we observe with respect to I1 occur for

VisitABCD. While N = 100 was usually insufficient to learn an RM in I50
1 , it is enough in I50

2 . By

comparing the VisitABCD curves, it is clear that I50
2 consists of instances requiring less steps than

those in I50
1 . Furthermore, in the case of CoffeeMail, I100

1 has more types of joint events than

I100
2 ; thus, more examples are needed in that case, and the final RM is slightly different. This shows

Table 5.6: Example length of the goal, dead-end and incomplete examples used to learn the last RM
in the I50

1 setting.

N = 100 N = 250 N = 500

G D I G D I G D I

Coffee 2.8± 1.0 2.1± 1.1 1.5± 0.9 3.6± 1.8 3.0± 2.5 1.9± 1.4 5.7± 4.6 3.6± 2.8 2.2± 1.4
CoffeeMail 4.4± 1.4 3.3± 2.0 3.1± 1.8 5.5± 2.7 4.1± 2.8 3.6± 2.2 7.2± 4.3 4.9± 3.8 3.5± 2.3
VisitABCD – – – 9.2± 3.0 5.1± 3.0 5.4± 3.0 12.4± 4.2 6.2± 4.0 6.3± 4.2
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Figure 5.5: Learning curves for different combinations of instance sets (I10
2 , I50

2 , I100
2 ) and maximum

episode lengths (100, 250, 500).

that the instance set has an impact on the learned RMs.

Trace Compression

Compressed traces are applicable to the OfficeWorld tasks since (i) empty labels are meaningless

(i.e., the number of steps is unimportant), and (ii) observing a label for several consecutive steps

is equivalent to observing it once. Table 5.11 shows the impact of compressed traces on RM learn-

ing. The learning curves are omitted since they are similar for both trace types. All runs using

uncompressed traces finished on time for Coffee and CoffeeMail, whereas all such runs timed

out for VisitABCD; hence, compressed traces enable learning an RM for VisitABCD within the

allotted time. Besides, trace compression enables learning an RM several orders of magnitude faster

in CoffeeMail. Compressed traces are an order of magnitude shorter than uncompressed traces,

even in the simplest task (Coffee).
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Table 5.7: Total RM learning time in seconds for different combinations of instance sets (I10
2 , I50

2 ,
I100
2 ) and maximum episode lengths (100, 250, 500).

I10
2 I50

2 I100
2

N = 100 N = 250 N = 500 N = 100 N = 250 N = 500 N = 100 N = 250 N = 500

Coffee 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0 0.4± 0.0
CoffeeMail 2.8± 0.4 3.9± 1.1 8.1± 2.2 7.8± 3.1 10.3± 1.6 24.5± 7.5 6.8± 1.4 30.7± 14.6 22.2± 5.3
VisitABCD – – 802.1± 297.1 130.1± 46.4 290.2± 123.1 481.6± 115.1 53.2± 15.6 269.2± 108.0 355.8± 68.2

Table 5.8: Number of examples needed to learn the last RM for different combinations of instance
sets (I10

2 , I50
2 , I100

2 ) and maximum episode lengths (100, 250, 500).

I10
2 I50

2 I100
2

N = 100 N = 250 N = 500 N = 100 N = 250 N = 500 N = 100 N = 250 N = 500

Coffee 7.3± 0.3 7.6± 0.4 7.5± 0.5 8.2± 0.3 8.3± 0.3 8.6± 0.5 8.3± 0.3 8.0± 0.3 8.2± 0.3
CoffeeMail 17.8± 1.1 17.8± 0.8 20.6± 1.4 24.4± 1.5 26.2± 1.2 27.2± 1.4 24.9± 1.2 29.1± 1.4 27.4± 1.3
VisitABCD – – 74.8± 8.2 57.7± 5.6 53.8± 6.2 58.6± 3.9 42.5± 3.3 51.9± 3.3 53.3± 3.3

Table 5.9: Example length of the goal, dead-end and incomplete examples used to learn the last RM
in the I50

2 setting.

N = 100 N = 250 N = 500

G D I G D I G D I

Coffee 2.8± 1.0 2.1± 1.1 1.5± 0.9 3.6± 1.8 3.0± 2.5 1.9± 1.4 5.7± 4.6 3.6± 2.8 2.2± 1.4
CoffeeMail 3.5± 1.4 3.2± 1.7 2.7± 1.5 4.3± 2.8 4.0± 2.6 3.4± 2.6 5.1± 4.2 4.1± 3.1 3.5± 2.7
VisitABCD 7.1± 1.9 4.6± 2.3 4.6± 1.9 8.9± 3.7 5.5± 3.6 5.1± 2.6 11.2± 4.6 7.1± 4.8 5.8± 3.3

Table 5.10: Number of examples (total, goal, dead-end and incomplete) needed to learn the last RM
in the I50

2 and N = 250 setting.

All G D I

Coffee 8.7± 0.4 2.4± 0.1 3.0± 0.1 3.2± 0.3
CoffeeMail 26.2± 1.2 5.3± 0.3 8.2± 0.5 12.6± 0.9
VisitABCD 53.8± 6.2 1.6± 0.1 16.2± 1.4 36.0± 4.9

Table 5.11: RM learning metrics when traces are compressed (C) or uncompressed (U).

Time (s.) # Examples Example Length

C U C U C U

Coffee 0.4± 0.0 1.5± 0.2 8.7± 0.4 11.4± 0.4 2.8± 2.1 58.1± 64.6
CoffeeMail 18.9± 3.3 9314.6± 1859.7 29.0± 1.5 34.1± 1.4 4.0± 2.6 78.1± 65.7
VisitABCD 163.2± 44.3 – 54.9± 3.8 – 5.5± 3.1 –
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Table 5.12: RM learning metrics when the proposition set is unrestricted (P) or restricted to a
particular task (P̂).

Time (s.) # Examples Example Length

P P̂ P P̂ P P̂

Coffee 0.4± 0.0 0.3± 0.0 8.7± 0.4 6.4± 0.2 2.8± 2.1 1.5± 0.6
CoffeeMail 18.9± 3.3 1.5± 0.1 29.0± 1.5 16.1± 0.6 4.0± 2.6 2.7± 1.4
VisitABCD 163.2± 44.3 9.2± 1.6 54.9± 3.8 30.9± 2.3 5.5± 3.1 3.7± 1.8

Table 5.13: Comparison of different RM learning metrics for the cases where RMs must be acyclic
and where RMs can have cycles.

Time (s.) # Examples Example Length

Acyclic Cyclic Acyclic Cyclic Acyclic Cyclic

Coffee 0.4± 0.0 0.5± 0.0 8.7± 0.4 9.6± 0.4 2.8± 2.1 2.7± 2.2
CoffeeMail 18.9± 3.3 774.7± 434.4 29.0± 1.5 33.8± 1.7 4.0± 2.6 4.0± 2.6
VisitABCD 163.2± 44.3 1961.7± 1123.8 54.9± 3.8 81.0± 6.6 5.5± 3.1 5.5± 3.3

CoffeeDrop 13.9± 8.6* 0.6± 0.0 15.0± 3.1* 9.9± 0.5 5.4± 3.5* 5.3± 3.6
CoffeeMailDrop – 312.2± 145.9 – 37.8± 1.7 – 7.0± 5.3

Restricted Proposition Set

Table 5.12 shows how using the restricted proposition set P̂ for each OfficeWorld task compares

to using the complete set P. The restricted set P̂ causes a sensible decrease in the RM learning

time, especially for the more challenging tasks. Similarly, fewer examples are needed to learn a

helpful RM, and the example length is also reduced. Intuitively, using only the propositions that

describe the task’s subgoals eases RM learning: the hypothesis space is smaller, and no examples for

discarding irrelevant labels are needed. The learning curves are not compared since they are similar.

Cyclicity

Table 5.13 shows how enforcing the RM to be acyclic changes RM learning. The tasks that we have

considered so far do not require cycles. Allowing the RMs to have cycles results in a larger search

space; consequently, the RM learning time considerably increases, especially for CoffeeMail and

VisitABCD. While more examples are also needed to rule out the solutions with cycles, their length

remains approximately the same.

We introduce two tasks to show that our approach can learn such RMs, CoffeeDrop and

CoffeeMailDrop, where the agent drops the coffee when it steps on a decoration (∗); thus, in

such cases, the agent must go back to the coffee location. Dead-end histories cannot be observed in

these tasks, so the rejecting state is unreachable in the learned RMs. When cycles are allowed, the

results for CoffeeDrop and CoffeeMailDrop resemble those for Coffee and CoffeeMail,

respectively. The running time for CoffeeMailDrop is lower than for CoffeeMail since the

former has fewer states than the latter (it does not have a rejecting state); besides, the example

length is higher since there are no dead-end states to avoid. In the acyclic setting, an RM is only

found in 10/20 and 2/20 runs for CoffeeDrop and CoffeeMailDrop, respectively. In this case,

the number of RM states depends on how many times a coffee has been picked and dropped in the

example traces. These tasks are clearly not suited to be expressed by acyclic RMs.
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Table 5.14: RM learning metrics for different maximum number of edges from one state to another
(κ).

Time (s.) # Examples Example Length

κ = 1 κ = 2 κ = 1 κ = 2 κ = 1 κ = 2

Coffee 0.4± 0.0 1.0± 0.1 8.7± 0.4 11.7± 0.6 2.8± 2.1 3.1± 2.4
CoffeeMail 18.9± 3.3 2252.7± 623.2* 29.0± 1.5 32.5± 1.6* 4.0± 2.6 4.0± 2.5*
VisitABCD 163.2± 44.3 – 54.9± 3.8 – 5.5± 3.1 –

CoffeeOrMail 0.9± 0.1 1.0± 0.1 11.7± 0.6 11.2± 0.4 2.7± 1.8 2.4± 2.1

Table 5.15: Total RM learning time when symmetry breaking is disabled (No SB) and enabled (SB).

Acyclic Cyclic

No SB SB No SB SB

Coffee 0.5± 0.0 0.4± 0.0 0.5± 0.0 0.5± 0.0
CoffeeMail 277.4± 70.2 18.9± 3.3 4204.3± 1334.4* 774.7± 434.4
VisitABCD 1070.0± 725.6 163.2± 44.3 3293.5± 1199.2* 1961.7± 1123.8

Maximum Number of Edges between States

Table 5.14 shows that increasing κ from 1 to 2 negatively impacts RM learning due to a notable

increase in the hypothesis space size. In the worst case, only one run does not time out for Vis-

itABCD; besides, for CoffeeMail, the number of completed runs decreases from 20 to 15, and

the running time becomes two orders of magnitude higher. In contrast, the number of examples and

the example lengths remain similar for κ = 1.

Since the original OfficeWorld tasks have at most one edge from one state to another, we

consider an additional task whose RM can only be learned with κ > 1. The CoffeeOrMail task

consists of going to the coffee or mail location (it does not matter which) and then going to the

office while avoiding the decorations. A minimal RM consists of 4 and 5 states for κ = 2 and κ = 1,

respectively. The Coffee task is also characterized by a similar minimal RM consisting of 4 states

regardless of the value of κ. The results are similar independently from the value of κ although κ = 1

results in a larger RM; however, it would not be enough to learn RMs requiring a single disjunctive

transition from the initial state to the accepting state (e.g., “observe K or B”).

Symmetry Breaking

Table 5.15 shows the symmetry breaking constraints’ effect on the time required to learn RMs. The

number of examples and example lengths barely change when symmetry breaking is used, so we

do not report the results. Symmetry breaking constraints speed up RM learning by an order of

magnitude in CoffeeMail (acyclic, cyclic) and VisitABCD (acyclic); furthermore, no run times

out when symmetry breaking is on, whereas two runs time out when these constraints are used and

the RM is allowed to have cycles (one for CoffeeMail and one for VisitABCD).

5.3 Experiments in CraftWorld

The CraftWorld domain (Andreas et al., 2017; Toro Icarte et al., 2018a) consists of a 39 × 39

grid without walls. The grid contains raw materials (wood, grass, iron) and tools/workstations
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(toolshed, workbench, factory, bridge, axe), which constitute the proposition set P. Like in the

OfficeWorld, (i) the agent moves in the four cardinal directions and remains in the same location

upon attempting to go beyond the grid’s limits, and (ii) at each timestep, the agent knows its

location coordinates (state) and observes the propositions in that location (label).

5.3.1 Instance Generation

The grids are randomly generated such that (i) all items must be in different locations (i.e., the labels

consist of at most one proposition), and (ii) there are 5 and 2 labeled locations for each material

and tool/workstation, respectively.

5.3.2 Tasks

The tasks consist in observing a specific sequence of materials and tools/workstations. We use the

set of tasks proposed by Toro Icarte et al. (2018a):

1. MakePlank: wood, toolshed.

2. MakeStick: wood, workbench.

3. MakeCloth: grass, factory.

4. MakeRope: grass, toolshed.

5. MakeShears: iron, wood, workbench (the iron and the wood can be observed in any order).

6. MakeBridge: iron, wood, factory (the iron and the wood can be observed in any order).

7. GetGold: iron, wood, factory, bridge (the iron and the wood can be observed in any order).

8. MakeBed: wood, toolshed, grass, workbench (the grass can be observed anytime before the

workbench.)

9. MakeAxe: wood, workbench, iron, toolshed (the iron can be observed anytime before the

toolshed).

10. GetGem: wood, workbench, iron, toolshed, axe (the iron can be observed anytime before the

toolshed).

Tasks 1–4 have 2 subgoals and are represented by 3-state minimal RMs. Tasks 5–6 have 3 subgoals

and are represented by 5-state minimal RMs. Task 7 has 4 subgoals and is represented by a 6-state

minimal RM. Tasks 8–9 have 4 subgoals and are represented by 7-state minimal RMs. Task 10 has

5 subgoals and is represented by an 8-state minimal RM. In line with Assumption 3.1.1, the agent

gets a reward of 1 upon achieving the goal and 0 otherwise. Unlike OfficeWorld, there are no

dead-end histories in this domain; hence, the set of dead-end examples is always empty, and the

rejecting state is unreachable. Appendix A.1 contains an illustration of a representative RM for each

group of tasks.
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Table 5.16: Hyperparameters used in the CraftWorld experiments.

Learning rate α 0.1
Exploration rate ε 0.1
Discount factor γ 0.99
Number of episodes per instance 10,000
Avoid learning purely negative formulas 3
Number of instances 100
Maximum episode length N 250
Trace compression 3
Enforce acyclicity 3
Number of disjuncts κ 1
Use restricted proposition set 7

5.3.3 Hyperparameters

Table 5.16 lists the hyperparameters used in these experiments, where α, ε and γ are used for both

the metapolicies and option policies across all HRL variants. The only difference with respect to the

default parameters used in OfficeWorld is the number of instances: we experimentally observed

that using 100 instances instead of 50 was a better choice for tasks 8–10 (as we explain later, RM

learning occasionally time out for these).

5.3.4 Results

Table 5.17 shows the RM learning metrics for the presented CraftWorld tasks using HRLG. The

tasks are divided into several groups according to their number of subgoals and the number of states

of their minimal RMs. Figure 5.6 shows the learning curves for one representative of each group of

tasks3 with and without interleaved RM learning. We observe the following:

• Like in the OfficeWorld tasks, the more subgoals and RM states, the higher the values for

the collected metrics (running time, number of examples, and example length); besides, the

number of goal examples still corresponds to the number of paths from the initial state to the

accepting state. The figure shows that, as before, learning is more frequent for the harder

tasks.

• The RM learning metrics are similar within the groups having simple RMs. The differences

within each group become bigger (e.g., MakeBed and MakeAxe) as the tasks involve more

subgoals since example lengths increase; consequently, observing two equivalent example sets

for two different tasks is unlikely.

• The running time increases dramatically from GetGold to MakeBed and MakeAxe; in-

deed, the learner times out for the latter tasks (5/20 for MakeBed and 4/20 for MakeAxe).

In the case of the hardest task, GetGem, the learner times out on 9 occasions. The number

of timeouts varies between algorithms, probably due to exploration, e.g. standard HRL times

out on 8 and 1 runs for MakeAxe and MakeBed, respectively.

• The convergence rate difference between RM learning approaches (ISA-HRL, ISA-QRM) and

approaches exploiting handcrafted RMs (HRL, QRM) is small for most tasks, showing that

3The learning curves are similar within each group; hence, we plot the curves for a representative of each group.
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Table 5.17: RM learning metrics for the CraftWorld tasks using HRLG.

Time (s.) # Examples Example Length

All G I

MakePlank 0.2± 0.0 4.4± 0.3 1.4± 0.1 3.0± 0.3 2.2± 1.2
MakeStick 0.2± 0.0 3.6± 0.2 1.2± 0.1 2.4± 0.2 2.2± 1.4
MakeCloth 0.3± 0.0 4.9± 0.4 1.2± 0.1 3.6± 0.4 2.4± 1.5
MakeRope 0.2± 0.0 4.2± 0.3 1.2± 0.1 2.9± 0.3 2.4± 1.4

MakeShears 2.0± 0.3 16.2± 0.8 3.3± 0.2 12.8± 0.8 3.4± 1.7
MakeBridge 1.7± 0.3 15.5± 1.3 3.0± 0.2 12.5± 1.2 3.0± 1.5

GetGold 60.7± 25.7 30.6± 3.2 2.2± 0.2 28.5± 3.2 4.0± 1.9

MakeBed 2140.4± 1071.7* 37.1± 3.1* 3.8± 0.3* 33.3± 3.0* 4.0± 1.7*
MakeAxe 2990.3± 717.7* 46.6± 3.5* 3.3± 0.2* 43.3± 3.5* 4.3± 1.9*

GetGem 6179.4± 2784.8* 116.8± 14.7* 1.2± 0.1* 115.6± 14.7* 5.2± 2.0*

the learned RMs are useful to learn a policy that achieves the goal. The gaps for the hardest

tasks (MakeAxe, MakeBed, and GetGem) are usually larger due to the timeouts in the

RM learning approaches.

• Given a handcrafted RM, QRMmin is equivalent to QRMmax since the minimum and maximum

distances to the accepting state are the same in these RMs. While the curves for ISA-QRMmin

and ISA-QRMmax are similar, they are not identical since the intermediate RMs can cause

variations.

• The approaches not using guidance (HRL, QRM) start converging faster than those that use it

(HRLG, QRMmin, QRMmax); however, the latter eventually learn to reach the accepting state

earlier. The initially slower convergence of the guidance-based approaches might be because

guidance results in more initial exploration.

5.4 Experiments in WaterWorld

The WaterWorld domain (Karpathy, 2015; Sidor, 2016; Toro Icarte et al., 2018a), which is il-

lustrated in Figure 5.7, consists of a 2D box containing 12 balls of 6 different colors (2 balls per

color). Each ball moves at a constant speed in a given direction. The balls bounce only when they

collide with a wall. The agent is a white ball that can change its velocity in any of the four cardinal

directions. The proposition set P = {r, g, b, c,m, y} is formed by the balls’ colors. At each step, the

agent observes (i) a state vector containing the absolute position and velocity of the agent and the

relative positions and velocities of the other balls, and (ii) a label containing the color of the balls

it overlaps. For example, the agent observes label {g} (green) in Figure 5.7. Note that several balls

can overlap at the same time; thus, the agent can observe several colors/propositions simultaneously.

5.4.1 Instance Generation

The balls are placed randomly and given a random direction at the beginning of each episode.
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Figure 5.7: The WaterWorld domain (Karpathy, 2015; Sidor, 2016; Toro Icarte et al., 2018a).

5.4.2 Tasks

The tasks we consider consist of observing a sequence of colors in a specific order:

• RGB: red (r) then green (g) then blue (b). It consists of 3 subgoals and is represented by a

4-state minimal RM.

• RG-B: red (r) then green (g) and (independently) blue (b). Note that there are two sequences

that can be interleaved. For instance, 〈{r}, {g}, {b}〉, 〈{b}, {r}, {g}〉 and 〈{r}, {b}, {g}〉 are

three possible goal traces. It consists of 3 subgoals and is represented by a 6-state minimal

RM. The RGB task is a subcase of this one.

• RGBC: red (r) then green (g) then blue (b) then cyan (c). It consists of 4 subgoals and is

represented by a 5-state minimal RM.

The agent gets a reward of 1 upon achieving the goal and 0 otherwise, complying with Assump-

tion 3.1.1. Dead-end histories are not observable, like in CraftWorld. If the agent observes more

than one proposition at a time, it may achieve several subgoals simultaneously; for instance, if the

agent has not overlapped with any ball yet and observes {r, g} while performing RGB, only b re-

mains to be observed to complete the task. We refer the reader to Appendix A.1 for an illustration

of the RMs for each task.

5.4.3 Hyperparameters

Unlike OfficeWorld and CraftWorld, the state space is continuous, so tabular learning ap-

proaches are not applicable; instead, like Toro Icarte et al. (2018a), we approximate the value

functions through DDQNs consisting of a multilayer perceptron (MLP) with 4 hidden layers of 64

rectifier units each. The networks are trained using the Adam optimizer (Kingma and Ba, 2015).

Table 5.18 lists the remaining hyperparameters, where α, ε and γ are used for both the metapolicies

and option policies across all HRL variants. In this case, the agent does not only learn an RM that

generalizes to several instances, but also a single general policy. The number of episodes per instance

is 1 since the environment is randomly reset at the beginning of each episode.
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Table 5.18: Hyperparameters used in the WaterWorld experiments.

Learning rate α 1× 10−5

Exploration rate ε 0.1
Discount factor γ 0.9
Number of episodes per instance 1
Maximum episode length N 150
Replay memory size 50,000
Replay start size 1,000
Batch size 32
Number of instances 50,000
Target network update frequency 100
Trace compression 3
Enforce acyclicity 3
Number of disjuncts κ 1
Avoid learning purely negative formulas 3
Use restricted proposition set 7

Table 5.19: RM learning metrics for the WaterWorld tasks using HRLG.

Time (s.) # Examples Example Length

All G I

RGB 3.7± 0.3 26.9± 1.1 7.0± 0.4 20.0± 0.9 4.3± 2.3
RG-B 129.5± 23.9 48.4± 1.2 15.4± 0.4 33.0± 1.0 4.4± 2.2
RGBC 111.8± 23.1 61.4± 2.7 11.7± 0.5 49.6± 2.4 5.5± 2.7

5.4.4 Results

Figure 5.8 shows the learning curves for the WaterWorld tasks, which are obtained by evaluating

the greedy policy 10 times (each on a randomly generated instance) every 500 episodes and averaging

the resulting undiscounted return. Table 5.19 shows the RM learning metrics using HRLG. We

observe the following:

• The tasks with more subgoals require learning RMs more often; for instance, RM learning

occurs throughout the entire interaction for RGBC, whereas it is concentrated at the beginning

for RGB.

• The convergence rate for RGB is lower than for RG-B. We hypothesize this is because the

former has fewer ways of achieving the goal (i.e., the reward is sparser) than the latter. How-

ever, the time and number of examples needed to learn a minimal RM for RG-B are higher

than for RGB since the RM state set is larger. Finally, we observe that RG-B requires more

goal traces, showing there are more paths towards the goal and, hence, making RM learning

more challenging since all these paths must be captured.

• The learning time for RGBC is lower than for RG-B since the minimal RM for the latter

has more states (hence, making the hypothesis space larger). In contrast, RGBC requires

more examples since it has more subgoals, as observed in the previous domains; in particular,

RGBC involves more incomplete examples, possibly because there are more subgoal sequences

to be discarded.
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• HRL-based approaches perform better than the QRM-based ones, especially in RGBC. We

hypothesize there are two possible causes for this behavior:

(i) The resetting of the value functions. Upon learning a new RM, HRL approaches only

reset the metapolicies, while QRM approaches reset all value functions. Since RMs are

learned throughout the entire interaction, QRM agents rarely can converge to a stable

policy.

(ii) While the HRL agent commits to satisfying a given formula (determined by the metapol-

icy) at a given step, the QRM agent selects the globally best action at each step. Unlike

the previous grid-world domains, the propositions here constantly change their position,

so learning a value function that generalizes to many instances is challenging.4

To determine which of these two causes is more plausible, we examine the performance of QRM

with a handcrafted RM. In general, the performances of approaches using RM learning are

very similar to those using a handcrafted RM, which shows that the forgetting effect is not as

present in WaterWorld as in the grid-world domains. The replay buffer likely alleviates the

forgetting effect since value functions can be updated from past experiences without ‘reliving’

them. Therefore, we conclude that our experiments better support the second cause.

• There is barely any difference between using guidance or not regarding convergence rate.

Camacho et al. (2019) shows a similar behavior for QRM using handcrafted RMs with a

different reward shaping mechanism. We hypothesize that since the value functions must

generalize to different instances, an agent not using guidance might explore similarly to an

agent that does use it; therefore, using guidance does not help much in these tasks.

5.5 Summary

Throughout this chapter, we have observed several commonalities between the results across do-

mains. We provide a summary of the main common findings below:

• The higher the number of subgoals and required states are, the higher the collected metrics

values (running time, number of examples, and example length).

• The number of goal examples used to learn an RM is approximately the same as the number

of paths from the initial state to the accepting state. Incomplete and dead-end examples refine

those paths and increase as the number of subgoals and RM states increases.

• Using auxiliary reward signals speeds up convergence in grid-world tasks. As mainly shown in

OfficeWorld, it helps to learn an RM early in the interaction and thus reduces relearning

later, which is extremely helpful in QRM since it resets all the value functions when a new

RM is learned. In contrast, guidance does not provide faster convergence in WaterWorld.

4We highlight that our evaluation of QRM in the WaterWorld domain differs from that by Toro Icarte et al.
(2018a). While we randomly initialize the environment at the start of every episode, Toro Icarte et al. use a fixed
map. In the latter case, QRM quickly converges in RGBC—indeed, we have reproduced the results.



5.5. SUMMARY 91

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn

R
G
B

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn

R
G
-B

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn

R
G
B
C

H
R

L
H

R
L

G
IS

A
-H

R
L

IS
A

-H
R

L
G

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn

R
G
B

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn
R
G
-B

0
1

2
3

4
5

0

0
.2

0
.4

0
.6

0
.81

N
u
m
b
er

o
f
ep

is
o
d
es

(×
1
0
4
)

Averagereturn

R
G
B
C

Q
R

M
Q

R
M

m
in

Q
R

M
m

a
x

IS
A

-Q
R

M
IS

A
-Q

R
M

m
in

IS
A

-Q
R

M
m

a
x

F
ig

u
re

5.
8:

L
ea

rn
in

g
cu

rv
es

fo
r

d
iff

er
en

t
R

L
al

go
ri

th
m

s
in

th
e
W
a
t
e
r
W

o
r
l
d

ta
sk

s
w

h
en

in
te

rl
ea

ve
d

R
M

le
ar

n
in

g
is

off
(H

R
L

,
Q

R
M

)
a
n

d
o
n

(I
S

A
-H

R
L

,
IS

A
-Q

R
M

).



92 CHAPTER 5. EVALUATION OF REWARD MACHINES

• HRL approaches converge faster than QRM approaches, especially without guidance. In these

contexts, QRM needs a formula labeling a transition to the accepting state to be satisfied to

start inducing changes in the value functions. In contrast, HRL updates the value functions

of all the formulas independently and, importantly, does not need to reset them when a new

RM is learned.

• The performance of approaches that learn RMs resembles that of analogous approaches that

exploit handcrafted RMs, except when the RMs cannot be learned under the specified timeout;

thus, the learned RMs accurately represent the structure of the tasks.

Learning reward machines is costly and incurs long running times as the number of constituent

states grows. We alleviate this scalability problem in Part II by learning several small RMs that can

be composed hierarchically instead of learning a single large RM. Further, we examine how learning

independent policies for each of these small RMs helps tackle sparse reward tasks more efficiently.
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Chapter 6

Formalism of Hierarchies of

Reward Machines

In this part of the thesis, we introduce hierarchies of reward machines, a formalism for hierarchically

composing reward machines by endowing them with the ability to call each other. To motivate the

existence of these hierarchies, let us consider the CraftWorld domain illustrated in Figure 6.1.

In this domain, the agent ( ) can move forward or rotate 90◦, staying put if it moves towards a

wall. Locations are labeled with propositions from P = { , , , , , , , , , , }. The agent

observes the propositions it steps on, e.g. the labeling function returns { } in the top-left corner.

Table 6.1 lists the tasks we consider, which consist of observing a sequence of propositions while

avoiding the lava ( ) if present. These tasks are based on those by Andreas et al. (2017) and Toro

Icarte et al. (2018a), but are definable in terms of each other; likewise, it is intuitive to compactly

express an RM as a composition of other RMs.

Example 6.0.1. Figure 6.2a shows a reward machine for Book, which consists of performing

Paper and Leather in any order followed by going to location . The left and right paths from u0

perform Paper and Leather in a different order; hence, the representation of each subtask appears

twice in the RM, once for each path. Intuitively, the presented RM could be compactly represented

by encapsulating each subtask into separate callable RMs.

Hierarchically composing RMs allows for reusing RMs across hierarchies for different tasks.

Throughout this part of the thesis, we formalize these hierarchies and examine how the enabled

reusability is leveraged to exploit and learn them. On the exploitation side, we present an HRL-

based method that treats each RM in the hierarchy as an independently solvable subtask, effectively

learning policies over the hierarchy at arbitrarily many timescales. Importantly, the RM-associated

policies are reusable within different hierarchies since they are trained independently of the global

task. On the learning side, we introduce a curriculum-based method for learning the hierarchies

given a set of tasks such that hierarchies for complex tasks build on those learned for simpler tasks.

In this chapter, we start by formally defining hierarchies of reward machines (Section 6.1). Next,

we describe two equivalence properties between the proposed hierarchies and standard reward ma-

chines (Section 6.2). Finally, we explain how hierarchies of reward machines are represented using

ASP (Section 6.3). The tasks we here consider are formalized in Chapter 3.

95
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Figure 6.1: An instance of the CraftWorld domain.

Table 6.1: List of CraftWorld tasks. Descriptions “x ; y” express sequential order (observe/do
x then y), descriptions “x & y” express that x and y can be observed/done in any order, and h is
the root RM’s height.

Task h Description Task h Description

Batter 1 ( & ) ; Book 2 (Paper & Leather) ;
Bucket 1 ; Map 2 (Paper & Compass) ;
Compass 1 ( & ) ; MilkBucket 2 Bucket ;
Leather 1 ; BookQuill 3 Book & Quill
Paper 1 ; SweetMilk 3 MilkBucket & Sugar
Quill 1 ( & ) ; Cake 4 Batter ; SweetMilk ;
Sugar 1 ;

u0

u1

u2

u3

u4

u5

u6

u7

uA

∧ ¬

(a) A regular RM for Book.

u0
0

u1
0 u2

0

u3
0

uA0

M0 (root)

M1 | ¬ M2 | >

M2 | > M1 | >

M> |

u0
1

u1
1

uA1

M1

M> |

M> |

u0
2

u1
2

uA2

M2

M> |

M> |

(b) An HRM for Book.

Figure 6.2: A standard RM and an HRM for Book. In (a), an edge from u to u′ is labeled ϕ(u, u′).
In (b), an edge from u to u′ in RM Mi is labeled Mj | ϕi(u, u′,Mj). In both cases, accepting states
are double circled, and loops are omitted.
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6.1 Hierarchies of Reward Machines

In this section, we introduce the formalism for hierarchically composing reward machines. We split

the definition into two parts. First, we define the concepts related to the structure of the hierarchies

and state the underlying assumptions (Section 6.1.1). Then, we formally describe how an HRM

processes a trace (Section 6.1.2).

6.1.1 Structure

To constitute a hierarchy of RMs, we need to endow RMs with the ability to call each other. We

redefine the reward machines from Chapter 3 to enable calls through the logical transition function;

besides, to simplify the formalization, reward machines include sets of accepting and rejecting states

instead of a single accepting state and a single rejecting state.

Definition 6.1.1 (Reward machine). Given a set of reward machines M, a reward machine is a

tuple M = 〈U ,P, ϕ, r, u0,UA,UR〉, where:

• U is a finite set of states;

• P is a finite set of propositions that constitutes the alphabet of the reward machine;

• ϕ : U × U ×M → DNFP is the logical transition function such that ϕ(u, u′,M) denotes the

DNF formula over P that must be satisfied to transition from u ∈ U to u′ ∈ U by calling RM

M ∈M;

• r : U × U → R is the reward-transition function, which outputs the reward associated with a

state transition;

• u0 ∈ U is the unique initial state;

• UA ⊆ U is a set of accepting states denoting the task’s goal achievement; and

• UR ⊆ U is a set of rejecting states denoting the unfeasibility of achieving the task’s goal.

We refer to the formulas ϕ(u, u′,M) as contexts since they represent conditions under which calls

are made. As we shall see later, contexts help preserve determinism and must be satisfied to start a

call (a necessary but not sufficient condition). The hierarchies we consider contain an RM M> called

the leaf RM, which solely consists of an accepting state (i.e., U> = UA> = {u0
>}), and immediately

returns control to the RM that calls it; indeed, as described later, reaching the accepting state of a

called RM results in returning control to the calling RM. Next, we formally define the hierarchies

and make some assumptions about their structure.

Definition 6.1.2 (Hierarchy of reward machines). A hierarchy of reward machines (HRM) is a

tuple H = 〈M,Mr,P〉, where M = {M0, . . . ,Mm−1} ∪ {M>} is a set of m RMs and the leaf RM

M>, Mr ∈ M \ {M>} is the root RM, and P is a finite set of propositions used by all constituent

RMs.

Assumption 6.1.1. HRMs do not have circular dependencies; that is, an RM cannot be called back

from itself, including recursion.
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Assumption 6.1.2. Rejecting states are global; that is, they cause the root task to fail.

Assumption 6.1.3. Given an HRM H = 〈M,Mr,P〉, the logical transition function ϕi of each

RM Mi ∈M in the hierarchy is such that ϕi(u, u,M) = ⊥ for u ∈ U and M ∈M.

Assumption 6.1.4. Given an HRM H = 〈M,Mr,P〉, the logical transition function ϕi of each

RM Mi ∈M in the hierarchy is such that ϕi(u, u
′,M) = ⊥ for u ∈ UA ∪UR, u′ ∈ U and M ∈M.

Assumption 6.1.5. Given an HRM H = 〈M,Mr,P〉, the reward-transition function of any RM

Mi is ri(u, u
′) = 1[u /∈ UAi ∧ u′ ∈ UAi ].

Given Assumption 6.1.1, each RM Mi has a height hi, which corresponds to the maximum

number of nested calls needed to reach the leaf. Formally, if i = >, then hi = 0; otherwise,

hi = 1 + maxj hj , where j ranges over all RMs called by Mi (i.e., there exists 〈u, v〉 ∈ Ui × Ui
such that ϕi(u, v,Mj) 6= ⊥). Table 6.1 shows the root’s height of the HRMs of each CraftWorld

task. Assumption 6.1.2 is required to preserve the equivalence with standard RMs (see Section 6.2).

Assumptions 6.1.3–6.1.5 are analogous to Assumptions 3.2.1–3.2.3 made in the context of standard

RMs. Assumption 6.1.3 ensures that the condition labeling self-loops is unsatisfiable; indeed, as

detailed later, self-loops are taken if the state cannot be left. Assumption 6.1.4 indicates that there

are no outgoing transitions from accepting and rejecting states. Assumption 6.1.5 is made as per

Assumption 3.1.1. The agent observes the rewards coming from the reward-transition function of

the root.

Example 6.1.1. Figure 6.2b shows the HRM for Book, whose root has height h = 2. The Paper

and Leather RMs invoked by the root have h = 1. The context ¬ in the call to M1 preserves

determinism, as detailed later.

6.1.2 Traversal

We here describe how an HRM processes a label trace. To indicate where the agent is in an HRM,

we define the notion of hierarchy states.

Definition 6.1.3 (Hierarchy state). Given an HRM H = 〈M,Mr,P〉, a hierarchy state is a tuple

〈Mi, u,Φ,Γ〉, where Mi ∈ M is an RM, u ∈ Ui is a state, Φ ∈ DNFP is an accumulated context,

and Γ is a call stack.

As we will see later, accumulated contexts result from the conjunction of call contexts at different

heights in the hierarchy; in other words, it is the full condition under which a call from a given state

is made. By Assumption 6.1.1, the accumulated context is always > at the root since no RM can

call the root. Next, we define the call stack that constitutes hierarchy states.

Definition 6.1.4 (Call stack). Given an HRM H = 〈M,Mr,P〉, a call stack Γ contains tuples

〈u, v,Mi,Mj , φ,Φ〉, each denoting a call where u ∈ Ui is the state from which the call is made;

v ∈ Ui is the next state in the calling RM Mi ∈ M after reaching an accepting state of the called

RM Mj ∈M; φ ∈ DNFP are the disjuncts of ϕi(u, v,Mj) satisfied by a label; and Φ ∈ DNFP is the

accumulated context.

Call stacks determine where to resume the execution. Each RM appears in the stack at most once

since, by Assumption 6.1.1, HRMs have no circular dependencies. We use Γ ⊕ 〈u, v,Mi,Mj , φ,Φ〉
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to denote a stack recursively defined by a stack Γ and a top element 〈u, v,Mi,Mj , φ,Φ〉. The initial

hierarchy state of an HRM H = 〈M,Mr,P〉 is 〈Mr, u
0
r,>, []〉: we are in the initial state of the root,

there is no accumulated context, and the stack is empty. We remark two design decisions on the

tuples 〈u, v,Mi,Mj , φ,Φ〉 motivated by the exploitation algorithm described in Chapter 7:

1. The fundamental elements for the formalism are the calling machine Mi, the called machine

Mj , and the state v after returning control to the former machine. In contrast, the state u

from which the call is made, the context φ, and the accumulated context Φ are just memorized

so that the agent can update its choices based on the actual transitions taken in the HRM.

2. The context φ is not necessarily ϕi(u, v,Mj), but the DNF formula formed by the disjuncts

of ϕi(u, v,Mj) satisfied by a label. Like the above, this is important for updating the agent’s

choices based on the actually satisfied conditions in the HRM. In the following paragraphs,

ϕ(L) denotes the DNF formula formed by the disjuncts of a DNF formula ϕ ∈ DNFP satisfied

by a label L ⊆ P ; for instance, if ϕ = (a∧¬d)∨ b∨¬c and L = {a}, then ϕ(L) = (a∧¬d)∨¬c.

At the beginning of this section, we mentioned that satisfying the context of a call is a necessary

but not sufficient condition to start the call. We now introduce a sufficient condition, called exit

condition.

Definition 6.1.5 (Exit condition). Given an HRM H = 〈M,Mr,P〉 and a hierarchy state 〈Mi, u,

Φ,Γ〉, the exit condition ξi,u,Φ ∈ DNFP is the formula that must be satisfied to leave that hierarchy

state. Formally,

ξi,u,Φ =


Φ if i = >;∨

φ=ϕi(u,v,Mj),
φ 6=⊥,v∈Ui,Mj∈M

ξj,u0
j ,DNF(Φ∧φ) otherwise,

where DNF(Φ ∧ φ) is Φ ∧ φ in DNF. The formula is Φ if Mi = M> since it always returns control

once called; otherwise, the formula is recursively defined as the disjunction of the exit conditions

from the initial state of the called RM.

Example 6.1.2. The exit condition for the initial hierarchy state in Figure 6.2b is (¬ ∧ ) ∨ .

We now have everything required to define the hierarchical transition function δH of a hierarchy

of reward machines H.

Definition 6.1.6 (Hierarchical transition function). Given an HRM H, the hierarchical transition

function δH maps a hierarchy state 〈Mi, u,Φ,Γ〉 into another given a label L. Formally,

δH(〈Mi, u,Φ,Γ〉,L) =



δH(〈Mj , u
′,>,Γ′〉,⊥) if u ∈ UAi , |Γ| > 0,

Γ = Γ′ ⊕ 〈·, u′,Mj ,Mi, ·, ·〉;

δH(〈Mj , u
0
j ,Φ

′, if L |= ξj,u0
j ,Φ

′ where

Γ⊕ 〈u, u′,Mi,Mj , φ,Φ〉〉,L) φ = ϕi(u, u
′,Mj)(L),

Φ′ = DNF(Φ ∧ φ);

〈Mi, u,Φ,Γ〉 otherwise,
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where ⊥ denotes a label that cannot satisfy any formula, and · denotes something unimportant for

the case.

The hierarchical transition function δH considers three different cases, which we describe below

in top-down order:

1. If u is an accepting state of Mi and the stack Γ is non-empty, pop the top element of Γ and

return control to the previous RM, recursively applying δH in case several accepting states are

reached simultaneously. The accumulated context of the resulting hierarchy state is > since a

transition in Mj has been taken; that is, the condition for starting Mj has been satisfied and

does not apply anymore. In accordance with the previous remarks on the call stack, some of

the stored elements are unimportant for determining the transitions.

2. If L satisfies the context of a call and the exit condition from the initial state of the called

RM, push the call onto the stack and recursively apply δH until M> is reached. Following the

previous remarks on the call stack, φ is a DNF formula constituted by the satisfied disjuncts

of ϕi(u, u
′,Mj).

3. If none of the above holds, the hierarchy state remains unchanged.

The logical transition functions ϕ of the RMs must be such that δH is deterministic, i.e. a label

cannot simultaneously satisfy the contexts and exit conditions associated with two triplets 〈u, v,Mi〉
and 〈u, v′,Mj〉 such that either (i) v = v′ and i 6= j, or (ii) v 6= v′. Contexts help enforce determinism

by making formulas mutually exclusive. Enforcing determinism through conditions on the calls (i.e.,

contexts) enables reusing existing RMs effectively; indeed, the alternative consists of making a copy

of the called RMs and modifying the formulas on the edges from the initial state to ensure mutual

exclusivity, which is inflexible and unscalable.

Example 6.1.3. Given the HRM from Figure 6.2b, if the call to M1 from the initial state of M0

had context > instead of ¬ , then M1 and M2 could be both started if { , } was observed, thus

making the HRM non-deterministic.

Example 6.1.4. Given the HRM from Figure 6.2b, the context ¬ in the call to M1 from the initial

state of the root could be removed by (i) making a copy of M1 called M ′1, (ii) modifying the edge

from u0
1 to u1

1 such that the formula is ∧ ¬ , and (iii) changing the aforementioned call such

that M ′1 is invoked instead. Despite preserving determinism, this approach does not reuse existing

machines which, in the worst case, leads to an exponential increase in the number of machines in

the hierarchy. From the learning point of view (Chapter 7), such an increase is undesirable, and

hence, contexts constitute a more flexible option for enforcing determinism.

Finally, akin to reward machines, we introduce hierarchy traversals to determine how HRMs

process label traces. Based on the evaluation of a trace by an HRM, we later define what it means

for an HRM to be valid with respect to a trace. The latter is essential for proving the correctness

of our ASP encoding (Section 6.3) and learning the HRMs (Chapter 7).

Definition 6.1.7 (Hierarchy traversal). Given a label trace λ = 〈L0, . . . ,Ln〉, a hierarchy traversal

H(λ) = 〈v0, v1, . . . , vn+1〉 is a unique sequence of hierarchy states such that (i) v0 = 〈Mr, u
0
r,>, []〉,

and (ii) δH(vi,Li) = vi+1 for i = 0, . . . , n. An HRM H accepts λ if vn+1 = 〈Mr, u,>, []〉 and u ∈ UAr
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(i.e., an accepting state of the root is reached). Analogously, H rejects λ if vn+1 = 〈Mk, u, ·, ·〉 and

u ∈ URk for any k ∈ {0, . . . ,m− 1} (i.e., a rejecting state in the HRM is reached, in accordance with

Assumption 6.1.2).

Example 6.1.5. The HRM in Figure 6.2b accepts trace λ = 〈{ }, { }, {}, { }, { }, { }〉, whose

traversal is H(λ) = 〈v0, v1, v2, v3, v4, v5, v6〉, where:

v0 = 〈M0, u
0
0,>, []〉,

v1 = δH(v0, { })

= δH(〈M0, u
0
0,>, []〉, { })

= δH(〈M1, u
0
1,¬ , [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉, { })

= δH(〈M>, u0
>,¬ ∧ , [〈u0

0, u
1
0,M0,M1,¬ ,>〉, 〈u0

1, u
1
1,M1,M>, ,¬ 〉]〉, { })

= δH(〈M1, u
1
1,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉,⊥)

= 〈M1, u
1
1,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉,

v2 = δH(v1, { })

= δH(〈M1, u
1
1,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉, { })

= δH(〈M>, u0
>, , [〈u0

0, u
1
0,M0,M1,¬ ,>〉, 〈u1

1, u
A
1 ,M1,M>, ,>〉]〉, { })

= δH(〈M1, u
A
1 ,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉,⊥)

= δH(〈M0, u
1
0,>, []〉,⊥)

= 〈M0, u
1
0,>, []〉,

v3 = δH(v2, {})

= δH(〈M0, u
1
0,>, []〉, {})

= 〈M0, u
1
0,>, []〉,

v4 = δH(v3, { })

= δH(〈M0, u
1
0,>, []〉, { })

= δH(〈M2, u
0
2,>, [〈u1

0, u
3
0,M0,M2,>,>〉]〉, { })

= δH(〈M>, u0
>, , [〈u1

0, u
3
0,M0,M2,>,>〉, 〈u0

2, u
1
2,M2,M>, ,>〉]〉, { })

= δH(〈M2, u
1
2,>, [〈u1

0, u
3
0,M0,M2,>,>〉]〉,⊥)

= 〈M2, u
1
2,>, [〈u1

0, u
3
0,M0,M2,>,>〉]〉,

v5 = δH(v4, { })

= δH(〈M2, u
1
2,>, [〈u1

0, u
3
0,M0,M2,>,>〉]〉, { })

= δH(〈M>, u0
>, , [〈u1

0, u
3
0,M0,M2,>,>〉, 〈u1

2, u
A
2 ,M2,M>, ,>〉]〉, { })

= δH(〈M2, u
A
2 ,>, [〈u1

0, u
3
0,M0,M2,>,>〉]〉,⊥)

= δH(〈M0, u
3
0,>, []〉,⊥)

= 〈M0, u
3
0,>, []〉,

v6 = δH(v5, { })

= δH(〈M0, u
3
0,>, []〉, { })

= δH(〈M>, u0
>, , [〈u3

0, u
A
0 ,M0,M>, ,>〉]〉, { })
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= δH(〈M0, u
A
0 ,>, []〉,⊥)

= 〈M0, u
A
0 ,>, []〉.

Definition 6.1.8 (Validity). Given a trace λ∗, where ∗ ∈ {G,D, I}, an HRM H is valid with respect

to λ∗ if one of the following holds:

• H accepts λ∗ and ∗ = G (i.e., λ∗ is a goal trace).

• H rejects λ∗ and ∗ = D (i.e., λ∗ is a dead-end trace).

• H does not accept nor reject λ∗ and ∗ = I (i.e., λ∗ is an incomplete trace).

6.2 Properties

In this section, we state and prove two properties on the equivalence between HRMs and the RMs

introduced in Chapter 3. Indeed, the hierarchy formalism described in Section 6.1 is conceived

to preserve the equivalence with RMs through the behavior of the hierarchical transition function.

Before posing the properties, we formally define what flat RMs and HRMs are.

Definition 6.2.1 (Flat RM). Given an HRM H = 〈M,Mr,P〉, a constituent RM Mi ∈ M is flat

if its height hi is 1; that is, Mi only calls the leaf M>.

Definition 6.2.2 (Flat HRM). An HRM H = 〈M,Mr,P〉 is flat if the root RM Mr is flat.

In conformity with these definitions, a flat HRM is effectively one of the RMs from Chapter 3

since the root RM of a flat HRM only performs calls to the leaf; for instance, Figure 6.2a is a flat

HRM for Book. Hence, in what follows, we focus on discussing how the behavior of an arbitrary

HRM can be reproduced by an equivalent flat HRM. We now define what it means for two HRMs

to be equivalent based on a similar definition from the automaton theory literature (Sipser, 1997).

Definition 6.2.3 (HRM equivalence). Given a set of propositions P and a labeling function l, two

HRMs H = 〈M,Mr,P〉 and H ′ = 〈M′,M ′r,P〉 are equivalent if for any label trace λ one of the

following conditions holds: (i) both HRMs accept λ, (ii) both HRMs reject λ, or (iii) neither of the

HRMs accepts or rejects λ.

The equivalence properties between an arbitrary HRM and a flat HRM are stated below. First,

we formally show that any HRM can be transformed into an equivalent flat one, which we prove by

construction in Section 6.2.1.

Theorem 6.2.1. Given an HRM H, there exists an equivalent flat HRM H̄.

Given the construction used in Theorem 6.2.1, we show that the number of states and edges of

the resulting flat HRM can be exponential in the height of the root (see Theorem 6.2.2). We prove

this in Section 6.2.2 through an instance of a general HRM parametrization where the constituent

RMs are highly reused, hence illustrating the convenience of HRMs to compose existing knowledge

succinctly. In line with the theory, learning a non-flat HRM can take a few seconds, whereas learning

an equivalent flat HRM is often unfeasible (see Chapter 8).
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Theorem 6.2.2. Let H = 〈M,Mr,P〉 be an HRM and hr be the height of its root Mr. The number

of states and edges in an equivalent flat HRM H̄ can be exponential in hr.

6.2.1 Proof of Theorem 6.2.1

To prove the theorem, we introduce an algorithm for flattening any HRM. Without loss of generality,

we work on the case of an HRM with two hierarchy levels; that is, an HRM consisting of a root RM

that calls flat RMs. An HRM with an arbitrary number of levels can be flattened by considering the

RMs in two levels at a time. We start flattening RMs in the second level (i.e., with height 2), which

use RMs in the first level (by definition, these are already flat), and once the second level RMs are

flat, we repeat the process with the levels above until the root is reached. This process is applicable

since, by Assumption 6.1.1, the hierarchies do not have cyclic dependencies (including recursion). In

line with Assumption 6.1.5, we assume that the reward-transition function of each resulting flat RM

Mi is ri(u, u
′) = 1[u /∈ UAi ∧ u′ ∈ UAi ]; however, the proof could be adapted to arbitrary definitions

of ri.

Preliminary Transformation Algorithm

Before proving Theorem 6.2.1, we introduce an intermediate step that transforms a flat HRM into

an equivalent one that takes contexts with which it may be called into account. Remember that a

call to an RM is associated with a context. In the case of two-level HRMs, such as the ones we are

considering in this flattening process, the context and the exit condition from the initial state of the

called flat RM must be satisfied. Crucially, the context must only be satisfied at the time of the

call; that is, it only lasts for a single transition. Therefore, if we revisit the initial state of the called

RM by taking an edge to it, the context should not be checked anymore.

To make the need for this transformation clearer, we exemplify it through the HRM in Figure 6.3a.

The flattening algorithm described later embeds the called RM into the calling one; crucially, the

context of the call is taken into account by putting it in conjunction with the outgoing edges from

the initial state of the called RM.1 Figure 6.3b is a flat HRM obtained using the flattening algorithm;

however, it does not behave like the HRM in Figure 6.3a. Following the definition of the hierarchical

transition function δH , the context of a call only lasts for a single transition in the called RM in

Figure 6.3a (i.e., a∧¬c is only checked when M1 is started), but the context is kept permanently in

Figure 6.3b, which is problematic if the initial state is revisited. We later come back to this example

after presenting the transformation algorithm.

To deal with the situation above, we need to transform an RM to ensure that contexts are

only checked once from the initial state. We describe this transformation as follows. Given a

flat HRM H = 〈M,Mr,P〉 with root Mr = 〈Ur,P, ϕr, rr, u0
r,UAr ,URr 〉, we construct a new HRM

H ′ = 〈M′,M ′r,P〉 with root M ′r = 〈U ′r,P, ϕ′r, r′r, u0
r,UAr ,URr 〉 such that:

• U ′r = Ur ∪ {û0
r}, where û0

r plays the role of the initial state after the first transition is taken.

• The state transition function ϕ′r is built by copying ϕr and applying the following changes:

1. Remove the edges to the actual initial state from any state v ∈ U ′r: ϕ′r(v, u0
r,M>) = ⊥.

Note that since the RM is flat, the only callable RM is the leaf M>.

1We refer the reader to the forthcoming Flattening Algorithm subsection for specific details.
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u0
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uA0

M1 | ¬c

M0

u0
1

u1
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M> | a M> | b

M> | c ∧ ¬b

M1

(a) Original HRM with root M0.

u0
0

u1

uA0

M> | a∧¬c M> | b

M> | c ∧ ¬b

(b) Flattened HRM without transforming M1.

u0
1

u1û0
1

uA1

M> | a
M> | b

M> | a
M> | c ∧ ¬b

(c) Transformed M1 from (a).

u0
0

u1û0
1

uA0

M> | a∧¬c
M> | b

M> | a
M> | c ∧ ¬b

(d) Flattened HRM after transforming M1.

Figure 6.3: Example to justify the need for the preliminary transformation algorithm.

2. Add edges to the dummy initial state û0
r from all states v ∈ U ′r that had an edge to the

actual initial state: ϕ′r(v, û
0
r,M>) = ϕr(v, u

0
r,M>).

3. Add edges from the dummy initial state û0
r to all those states v ∈ U ′r that the actual

initial state u0
r points to: ϕ′r(û

0
r, v,M>) = ϕ′r(u

0
r, v,M>).

• The reward transition function r′r(u, u
′) = 1[u /∈ UAr ∧ u′ ∈ UAr ] is defined as stated at the

beginning of the section.

The HRM H ′ is such thatM′ = {M ′r,M>}. Note that this transformation is only required in HRMs

where the RMs have initial states with incoming edges.

We now prove that this transformation is correct; that is, the HRMs are equivalent. There are

two cases depending on whether the initial state has incoming edges or not. First, if the initial

state u0
r does not have incoming edges, step 1 does not remove any edges going to u0

r, and step 2

does not add any edges going to û0
r, making it unreachable. Even though edges from û0

r to other

states may be added, it is irrelevant since it is unreachable. Therefore, we can safely say that in

this case, the transformed HRM is equivalent to the original one. Second, if the initial state has

incoming edges, we prove equivalence by examining the traversals H(λ) and H ′(λ) for the original

HRM H = 〈M,Mr,P〉 and the transformed one H ′ = 〈M′,M ′r,P〉 given a generic label trace

λ = 〈L0, . . . ,Ln〉. By construction, both H(λ) and H ′(λ) will be identical until reaching a state w

with an outgoing transition to u0
r in the case of H and the dummy initial state û0

r in the case of H ′.

More specifically, upon reaching w and satisfying an outgoing formula to the aforementioned states,
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the traversals are:

H(λ) = 〈〈Mr, u
0
r,>, []〉, . . . , 〈Mr, w,>, []〉〉,

H ′(λ) = 〈〈M ′r, u0
r,>, []〉, . . . , 〈M ′r, w,>, []〉〉.

By construction, state w is in both HRMs, and both of the aforementioned transitions from this

state are associated with the same formula, i.e. ϕr(w, u
0
r,M>) = ϕ′r(w, û

0
r,M>). Therefore, if one

of them is satisfied, the other will be too, and the traversals will become:

H(λ) = 〈〈Mr, u
0
r,>, []〉, . . . , 〈Mr, w,>, []〉, 〈Mr, u

0
r,>, []〉〉,

H ′(λ) = 〈〈M ′r, u0
r,>, []〉, . . . , 〈M ′r, w,>, []〉, 〈M ′r, û0

r,>, []〉〉.

We stay in u0
r and û0

r until a transition to a state w′ is satisfied. By construction, w′ is in both HRMs

and the same formula is satisfied, i.e., ϕr(u
0
r, w

′,M>) = ϕ′r(û
0, w′,M>). The hierarchy traversals

then become:

H(λ) = 〈〈Mr, u
0
r,>, []〉, . . . , 〈Mr, w,>, []〉, 〈Mr, u

0
r,>, []〉, . . . , 〈Mr, u

0
r,>, []〉, 〈Mr, w

′,>, []〉〉,

H ′(λ) = 〈〈M ′r, u0
r,>, []〉, . . . , 〈M ′r, w,>, []〉, 〈M ′r, û0

r,>, []〉, . . . , 〈M ′r, û0
r,>, []〉, 〈M ′r, w′,>, []〉〉.

From here, both traversals will be the same until transitions to u0
r and û0

r are respectively satisfied

again (if any) in H and H ′. Clearly, the only change in H(λ) with respect to H ′(λ) (except for

the different roots) is that the hierarchy states of the form 〈M ′r, û0
r,>, []〉 in the latter appear as

〈Mr, u
0
r,>, []〉 in the former. We now check if the equivalence conditions from Definition 6.2.3 hold:

• If H(λ) ends with state u0
r, H

′(λ) ends with state û0
r following the reasoning above. By

construction, neither of these states is accepting or rejecting; therefore, neither of these HRMs

accepts or rejects λ.

• If H(λ) ends with state w, H ′(λ) will also end with this state following the reasoning above.

Therefore, if w is an accepting state, both HRMs accept λ; if w is a rejecting state, both HRMs

reject λ; and if w is not an accepting or rejecting state, neither of the HRMs accepts or rejects

λ.

Since all equivalence conditions are satisfied for any trace λ, H and H ′ are equivalent.

Figure 6.3c exemplifies the output of the transformation algorithm given M1 in Figure 6.3a as

input, whereas Figure 6.3d is the output of the flattening algorithm discussed next, which correctly

handles the context unlike the HRM in Figure 6.3b.

Flattening Algorithm

We describe the algorithm for flattening an HRM. As previously stated, we assume without loss

of generality that the HRM to be flattened consists of two hierarchy levels (i.e., the root calls flat

RMs). We also assume that the flat RMs have the form produced by the previously presented

transformation algorithm.

Given an HRM H = 〈M,Mr,P〉 with root Mr = 〈Ur,P, ϕr, rr, u0
r,UAr ,URr 〉, we build a flat RM

M̄r = 〈Ūr,P, ϕ̄r, r̄r, ū0
r, ŪAr , ŪRr 〉 using the following steps:
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1. Copy the sets of states and initial state from Mr (i.e., Ūr = Ur, ū0
r = u0

r, ŪAr = UAr , ŪRr = URr ).

2. Loop through the non-false entries of the transition function ϕr and decide what to copy. That

is, for each triplet 〈u, u′,Mj〉 where u, u′ ∈ Ur and Mj ∈M such that ϕr(u, u
′,Mj) 6= ⊥:

(a) If Mj = M> (i.e., the called RM is the leaf), we copy the transition: ϕ̄r(u, u
′,M>) =

ϕr(u, u
′,M>).

(b) If Mj 6= M>, we embed the transition function of Mj = 〈Uj ,P, ϕj , rj , u0
j ,UAj ,URj 〉 into

M̄r. Remember that Mj is flat. To do so, we run the following steps:

i. Update the set of states by adding all non-initial and non-accepting states from Mj .

Similarly, the set of rejecting states is also updated by adding all rejecting states of

the called RM. The initial and accepting states from Mj are unimportant: their roles

are played by u and u′ respectively. In contrast, the rejecting states are important

since, by Assumption 6.1.2, they are global. The added states v are renamed to

vu,u′,j in order to take into account the edge being embedded: if the same state v

was reused for another edge, then we would not be able to distinguish them.

Ūr = Ūr ∪
{
vu,u′,j | v ∈

(
Uj \

(
{u0

j} ∪ UAj
))}

,

ŪRr = ŪRr ∪
{
vu,u′,j | v ∈ URj

}
.

ii. Embed the transition function ϕj of Mj into ϕ̄r. Since Mj is flat, we can make copies

of the transitions straightaway: the only important thing is to check whether these

transitions involve initial or accepting states which, as stated before, are going to be

replaced by u and u′ accordingly. Given a triplet 〈v, w,M>〉 such that v, w ∈ Uj and

for which ϕj(v, w,M>) = φ and φ 6= ⊥ we update ϕ̄r as follows:2

A. If v = u0
j and w /∈ UAj , then ϕ̄r(u,wu,u′,j ,M>) = DNF(φ ∧ ϕr(u, u′,Mj)). The

initial state of Mj has been substituted by u, we use the clone of w associated

with the call (wu,u′,j), and append the context of the call to Mj to the formula

φ.

B. If v = u0
j and w ∈ UAj , then ϕ̄r(u, u

′,M>) = DNF(φ ∧ ϕr(u, u′,Mj)). Like the

previous case but performing two substitutions: u replaces v and u′ replaces w.

The context is appended since it is a transition from the initial state of Mj .

C. If v 6= u0
j and w ∈ UAj , then ϕ̄r(vu,u′,j , u

′,M>) = φ. We substitute the accepting

state w by u′, and use the clone of v associated with the call (vu,u′,j). This time,

the call’s context is not added since v is not the initial state of Mj .

D. If none of the previous cases holds, there are no substitutions to be made nor

contexts to be taken into account. Hence, ϕ̄r(vu,u′,j , wu,u′,j ,M>) = φ. We just

use the clones of v and w corresponding to the call (vu,u′,j and wu,u′,j).

3. Form a new flat HRM H̄ = 〈{M̄r,M>}, M̄r,P〉 with the flattened root M̄r.

2We do not cover the case where v is an accepting state since, by Assumption 6.1.4, there are no outgoing transitions
from it. In the case of rejecting states, we keep all of them as explained in the previous case and, therefore, there are
no substitutions to be made. We also do not cover the case where w = u0j since the input flat machines never have
edges to their initial states, but to the dummy initial state.
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The reward transition function r′r(u, u
′) = 1[u /∈ ŪAr ∧ u′ ∈ ŪAr ] is defined as per Assumption 6.1.5.

If the resulting flattened root is called by an RM M with a higher height, the previous transformation

algorithm is applied to it before flattening M .

Given the flattening algorithm introduced above, we restate the theorem and prove it in the

following paragraphs.

Theorem 6.2.1. Given an HRM H, there exists an equivalent flat HRM H̄.

Proof. Let us assume that an HRM H̄ = 〈M̄, M̄r,P〉, where M̄r = 〈Ūr,P, ϕ̄r, r̄r, ū0
r, ŪAr , ŪRr 〉, is a

flat HRM that results from applying the flattening algorithm on an HRM H = 〈M,Mr,P〉, where

Mr = 〈Ur,P, ϕr, rr, u0
r,UAr ,URr 〉. For these HRMs to be equivalent, any label trace λ = 〈L0, . . . ,Ln〉

must satisfy one of the conditions in Definition 6.2.3. To prove the equivalence, we examine the

hierarchy traversals H(λ) and H̄(λ) given a generic label trace λ.

Let u ∈ Ur be a state in the root Mr of H and let ϕr(u, u
′,M>) be a satisfied transition from

that state. By construction, u is also in the root M̄r of the flat hierarchy H̄, and M̄r has an identical

transition ϕ̄r(u, u
′,M>), which must also be satisfied. If the hierarchy states are 〈Mr, u,>, []〉 and

〈M̄r, u,>, []〉 for H and H̄ respectively, then the next hierarchy states upon application of δH will

be 〈Mr, u
′,>, []〉 and 〈M̄r, u

′,>, []〉. Therefore, both HRMs behave equivalently when calls to the

leaf RM are made.

We now examine what occurs when a non-leaf RM is called in H. Let ϕr(u, u
′,Mj) be a sat-

isfied transition in Mr, and let ϕj(u
0
j , w,M>) be a satisfied transition from Mj ’s initial state. By

construction, M̄r contains a transition whose associated formula is the conjunction of the previous

two, i.e. ϕr(u, u
′,Mj)∧ ϕj(u0

j , w,M>). Now, the hierarchy traversals will be different depending on

w:

• If w /∈ UAj (i.e., w is not an accepting state of Mj), by construction, M̄r contains the transi-

tion ϕ̄r(u,wu,u′,j ,M>) = ϕr(u, u
′,Mj)∧ϕj(u0

j , w,M>). If the current hierarchy states are (the

equivalent) 〈Mr, u,>, []〉 and 〈M̄r, u,>, []〉 for H and H̄, then the next hierarchy states upon ap-

plication of δH are 〈Mj , w,>, [〈u, u′,Mr,Mj , ϕr(u, u
′,Mj),>〉]〉 and 〈M̄r, wu,u′,j ,>, []〉. These

hierarchy states are equivalent since wu,u′,j is a clone of w that saves all the call information

(i.e., a call to machine Mj for transitioning from u to u′).

• If w ∈ UAj (i.e., w is an accepting state of Mj), by construction, M̄r contains the transi-

tion ϕ̄r(u, u
′,M>) = ϕr(u, u

′,Mj) ∧ ϕj(u0
j , w,M>). If the current hierarchy states are (the

equivalent) 〈Mr, u,>, []〉 and 〈M̄r, u,>, []〉 for H and H̄, then the next hierarchy states upon

application of δH are 〈Mr, u
′,>, []〉 and 〈M̄r, u

′,>, []〉. These hierarchy states are equivalent

since the machine states are identical.

We now check the case in which we are inside a called RM. Let ϕr(u, u
′,Mj) be the transition that

caused H to start running Mj , and let ϕj(v, w,M>) be a satisfied transition within Mj such that

v 6= u0
j . By construction, M̄r contains a transition associated with the same formula ϕj(v, w,M>).

The hierarchy traversals vary depending on w:

• If w /∈ UAj (i.e., w is not an accepting state of Mj), by construction, M̄r contains the tran-

sition ϕ̄r(vu,u′,j , wu,u′,j ,M>) = ϕj(v, w,M>). For the transition to be taken in H, the hi-

erarchy state must be 〈Mj , v,>, [〈u, u′,Mr,Mj , ϕr(u, u
′,Mj),>〉]〉, whereas in H̄ it will be

〈M̄r, vu,u′,j ,>, []〉. These hierarchy states are clearly equivalent: vu,u′,j is a clone of v that
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Figure 6.4: Results of flattening the HRM in Figure 6.2b, where uij:v,w denotes the i-th state of RM
j in the call between states v and w in the parent RM. Note that v and w appear only if the state
is from a called RM. The highlighted states and edges in (a) could be compressed as shown in (b).

saves all information related to the call being made (the called machine, and the starting and

resulting states in the transition). Upon application of δH , the hierarchy states will remain

equivalent: 〈Mj , w,>, [〈u, u′,Mr,Mj , ϕr(u, u
′,Mj),>〉]〉 and 〈M̄r, wu,u′,j ,>, []〉 (again wu,u′,j

saves all the call information, just like the stack).

• If w ∈ UAj (i.e., w is an accepting state of Mj), by construction, M̄r contains the transition

ϕ̄r(vu,u′,j , u
′,M>) = ϕj(v, w,M>). This case corresponds to that where control is returned to

the calling RM. Like in the previous case, for the transition to be taken in H, the hierarchy state

must be 〈Mj , v,>, [〈u, u′,Mr,Mj , ϕr(u, u
′,Mj),>〉]〉, whereas in H̄ it will be 〈M̄r, vu,u′,j ,>, []〉.

The resulting hierarchy states then become 〈Mr, u
′,>, []〉 and 〈M̄r, u

′,>, []〉 respectively, which

are clearly equivalent (the state is exactly the same and both come from equivalent hierarchy

states).

We have shown that both HRMs have equivalent traversals for any given trace, implying that

both will accept, reject, or not accept nor reject a trace. Therefore, the HRMs are equivalent.

Figure 6.4a shows the result of applying the flattening algorithm on the Book HRM shown in

Figure 6.2b; indeed, the resulting flat HRM is like the RM in Figure 6.2a but naming the states

according to the algorithm. We emphasize that the presented algorithm is not guaranteed to produce

a smallest possible flat equivalent. For instance, the previous flat HRM has two states with an

outgoing edge labeled by to u3
0; therefore, the flat HRM can be compressed by merging the

aforementioned states, producing the HRM shown in Figure 6.4b. Estimating how much a flat HRM

(or any HRM) can be compressed and designing an algorithm to perform such compression are left

as future work.
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6.2.2 Proof of Theorem 6.2.2

We prove the theorem by first characterizing an HRM H using a set of abstract parameters. Then,

we describe how the number of states and edges in an HRM and its corresponding flat equivalent are

computed, and use these quantities to give an example for which the theorem holds. The parameters

are the following:

• The height of the root hr.

• The number of RMs with height i, N (i).

• The number of states in an RM with height i, U (i).

• The number of edges from each state in an RM with height i, E(i).

Note that N (hr) = 1 since, by definition, there is a single root. In addition, we make the following

assumptions on the structure of the hierarchy.

Assumption 6.2.1. The RMs with height i only call RMs with height i− 1.

Assumption 6.2.2. All RMs have a single accepting state and no rejecting states.

Assumption 6.2.3. All RMs except for the root are called.

Assumption 6.2.4. The HRM is well-formed (i.e., it behaves deterministically and there are no

cyclic dependencies).

Assumption 6.2.1 can be made since for the root to have height hr we need it to call at least

one RM with height hr − 1. Considering that all called RMs have the same height simplifies the

analysis since we can characterize the RMs at each height independently. Assumption 6.2.2 is safe

to make since a single accepting state is enough, and helps simplify the counting since only some

RMs could have rejecting states. Assumption 6.2.3 ensures that the flat HRM will comprise all RMs

in the original HRM. This is also a fair assumption: if a given RM is not called by any RM in the

hierarchy, we could remove it beforehand.

The number of states |H| in the HRM H is obtained by summing the number of states of each

RM:

|H| =
hr∑
i=1

N (i)U (i).

The number of states |H̄| in the flat HRM H̄ is given by the number of states in the flattened

root RM

|H̄| = Ū (hr),

where Ū (i) is the number of states in the flattened representation of an RM with height i, which is

recursively defined as:

Ū (i) =

U (i) if i = 1;

U (i) +
(
Ū (i−1) − 2

) (
U (i) − 1

)
E(i) if i > 1.

That is, the number of states in a flattened RM with height i has all states that the non-flat HRM

had. In addition, for each of the U (i) − 1 non-accepting states in the non-flat RM, there are E(i)
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Figure 6.5: Example of an HRM, whose root has height hr, used in the proof of Theorem 6.2.2.

edges, each of which calls an RM with height i−1 whose number of states is Ū (i−1). These edges are

replaced by the called RM except for the initial and accepting states, whose role is now played by

the states involved in the substituted edge (hence the −2). This construction process corresponds

to the one used to prove Theorem 6.2.1.

The total of number of edges in an HRM is given by:

hr∑
i=1

N (i)(U (i) − 1)E(i),

where (U (i) − 1)E(i) is the total number of edges in an RM with height i (the −1 is because the

accepting state is discarded), so N (i)(U (i)−1)E(i) determines how many edges there are across RMs

with height i.

The total number of edges in the flat HRM is given by the total number of edges in the flattened

root RM, Ē(hr), where Ē(i) is the total number of edges in the flattened representation of an RM

with height i, which is recursively defined as follows:

Ē(i) =

(U (i) − 1)E(i) if i = 1;

(U (i) − 1)E(i)Ē(i−1) if i > 1.

That is, each of the (U (i) − 1)E(i) edges in an RM with height i is replaced by Ē(i−1) edges given

by an RM with height i− 1 (if any).

The key intuition is that an HRM with root height hr > 1 is beneficial representation-wise if the

number of calls across RMs with height i is higher than the number of RMs with height i − 1; in

other words, RMs with lower heights are being reused. Numerically, the total number of edges/calls

in an RM with height i is (U (i) − 1)E(i) and, therefore, the total number of calls across RMs with

height i is (U (i) − 1)E(i)N (i). If this quantity is higher than N (i−1), then RMs with lower heights

are reused, and therefore having RMs with different heights is beneficial.

Having characterized hierarchies of reward machines through abstract parameters, we now restate

the theorem and prove it with an example.

Theorem 6.2.2. Let H = 〈M,Mr,P〉 be an HRM and hr be the height of its root Mr. The number

of states and edges in an equivalent flat HRM H̄ can be exponential in hr.

Proof. By example. Let H = 〈M,Mr,P〉 be an HRM whose root Mr has height hr and is param-

eterized by N (i) = 1, U (i) = 3, E(i) = 1 for i = 1, . . . , hr. Figure 6.5 shows an instance of this

hierarchy. Let us write the number of states in the flat RMs of each level:

Ū (1) = U (1) = 3,

Ū (2) = U (2) +
(
Ū (1) − 2

)(
U (2) − 1

)
E(2) = 3 + (3− 2) (3− 1) 1 = 5,
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Ū (3) = U (3) +
(
Ū (2) − 2

)(
U (3) − 1

)
E(3) = 3 + (5− 2) (3− 1) 1 = 9,

...

Ū (i) = 2Ū (i−1) − 1 = 2i + 1.

Hence, the number of states in the flat HRM is |H̄| = Ū (hr) = 2hr + 1, which grows exponentially

with the height of the root. In contrast, the number of states in the HRM grows linearly with the

height of the root, |H| =
∑hr
i=1N

(i)U (i) =
∑hr
i=1 1 · 3 = 3hr.

In the case of the total number of edges, we again write some iterations to derive a general

expression:

Ē(1) = (U (1) − 1)E(1) = (3− 1)1 = 2,

Ē(2) = (U (2) − 1)E(2)Ē(1) = (3− 1) · 1 · 2 = 4,

Ē(3) = (U (3) − 1)E(3)Ē(2) = (3− 1) · 1 · 4 = 8,

...

Ē(i) = 2Ē(i−1) = 2i.

Therefore, the total number of edges in the flat HRM is Ē(hr) = 2hr . In contrast, the total number

of edges in the HRM grows linearly:
∑hr
i=1N

(i)(U (i) − 1)E(i) =
∑hr
i=1 1(3− 1)1 = 2hr.

Finally, we emphasize that the resulting flat HRM cannot be compressed, unlike the HRM in

Figure 6.4: each state has at most one incoming edge, so there are no parallel paths that can be

merged. We have thus shown that there are HRMs for which the states and edges of an equivalent

flat HRM grow exponentially with the height of the root.

Using the aforementioned intuition, we observe that the hierarchical structure is actually expected

to be useful: the number of calls across RMs with height i is (U (i) − 1)E(i) = (3− 1)1 = 2, which is

greater than the number of RMs with height i− 1 (only 1).

In some cases, having a multi-level hierarchy (i.e., with hr > 1) is not beneficial. For instance,

given an HRM whose root has height hr and parameterized by N (i) = 1, U (i) = 2 and E(i) = 1,

the number of states in the equivalent flat HRM is constant (namely 2), whereas in the HRM itself

it grows linearly with hr. The same occurs with the number of edges. By checking the previously

introduced intuition, we observe that (U (i) − 1)E(i)N (i) = (2 − 1) · 1 · 1 = 1 6> N (i−1) = 1, which

verifies that having non-reused RMs with multiple heights is not useful.

6.3 Representation in Answer Set Programming

In this section, we describe how HRMs are represented using answer set programming (ASP). First,

we describe how traces (Section 6.3.1) and HRMs themselves are represented (Section 6.3.2). Next,

we prove the correctness of the proposed representation (Section 6.3.3). Finally, we devise rules for

enforcing determinism (Section 6.3.4) and whether the HRM complies with a canonical indexing of

states and edges for breaking symmetries (Section 6.3.5).
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6.3.1 Traces

The ASP representation of a trace does not change with respect to that introduced in Section 3.3.1.

Indeed, the prop, step, and last predicates are also used in the HRM representation presented

next.

6.3.2 Hierarchies of Reward Machines

We here describe the ASP representation for HRMs. To simplify the representation (and thus the

learning of the HRMs in Chapter 7), we make the following assumption.

Assumption 6.3.1. Given an HRM H = 〈M,Mr,P〉, the set of accepting states UAi and the set of

rejecting states URi of each constituent RM Mi ∈M are singletons (i.e., consist of a single state).

This assumption is made without loss of generality since accepting and rejecting states do not

have transitions to other states by Assumption 6.1.4; therefore, any constituent RM Mi with multiple

accepting and rejecting states can be mapped into an equivalent RM with a single accepting state uAi
and a single rejecting state uRi . Formalizing RMs using sets of accepting and rejecting states helps

simplify the state-transition function since it enables treating the leaf RM seamlessly (remember

its initial state is an accepting state); however, as we will later see, the leaf RM is not explicitly

represented here and, thus, we do not need to consider the aforementioned sets of states.

The rest of this section is organized as follows. First, we explain the particular rules that

characterize a given HRM. Second, we introduce the rules representing how the traversal in any

HRM is performed for any trace.

Structure

Akin to regular RMs (see Section 3.3.2), we introduce two representations of the structure of a

specific HRM, each with a different purpose:

• A non-factual representation, where the logical transition function of each constituent RM

is expressed in terms of rules (Definition 6.3.1), which is used by the HRM traversal rules

introduced later. The logical transition function of a learned root RM (Chapter 7) is expressed

using this representation.

• A factual representation, where the logical transition function of each constituent RM is ex-

pressed in terms of facts (Definition 6.3.2), which is used to verify whether the HRM (or

individual constituent RMs) complies with certain structural properties such as determinism

(Section 6.3.4).

In both cases, the predicates are similar to those employed in representing RMs in Chapter 3. We

start defining and exemplifying the former representation, and continue with the latter.

Definition 6.3.1 (Non-factual ASP representation of a hierarchy of reward machines). Given a

hierarchy of reward machines H = 〈M,Mr,P〉, A(H) =
⋃
Mi∈M\{M>} A(Mi) denotes the set of

ASP rules representing it, where each non-leaf RM Mi in the hierarchy is associated with its own

set of rules A(Mi) = AU (Mi) ∪ Aϕ(Mi) such that:

AU (Mi) = {state(u,Mi). | u ∈ Ui} ,
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and

Aϕ(Mi) =



call(u, u′, x+ y,Mi,Mj).

ϕ̄(u, u′, x+ y,Mi, T) : - not prop(p1, T), step(T).

...

ϕ̄(u, u′, x+ y,Mi, T) : - not prop(pn, T), step(T).

ϕ̄(u, u′, x+ y,Mi, T) : - prop(pn+1, T), step(T).

...

ϕ̄(u, u′, x+ y,Mi, T) : - prop(pm, T), step(T).

Mj ∈M, u, u′ ∈ Ui,

ϕi(u, u
′,Mj) 6= ⊥,

x =
∑j−1
k=0 |ϕi(u, u′,Mk)|,

1 ≤ y ≤ |ϕi(u, u′,Mj)|,

φy ∈ ϕi(u, u′,Mj),

φy = p1 ∧ · · · ∧ pn
∧ ¬pn+1 ∧ · · · ∧ ¬pm



.

The rule set AU (Mi) represents the set of states of reward machine Mi, whereas Aϕ(Mi) rep-

resents the logical transition function of Mi. The constituent rules of these sets are described as

follows:

• Facts state(u,Mi) indicate that u is a state of RM Mi.

• Facts call(u, u′, e,Mi,Mj) indicate that edge e between states u and u′ in RM Mi is labeled

with a call to RM Mj .

• Normal rules whose head is of the form ϕ̄(u, u′, e,Mi, T) indicate that the transition from state

u to u′ with edge e in RM Mi does not hold at step T. The body of these rules consists of a

single prop(p, T) literal and a step(T) atom indicating that T is a step.

There are some important aspects to take into account regarding the encoding:

• The leaf RM M> is not represented; that is, even though it can be called, its state set and

logic transition function are not encoded. We later introduce the ASP rules that represent

what occurs when it is called.

• The edge identifiers e between a given pair of states 〈u, u′〉 range from 1 to the total number of

disjuncts between them; that is, the identifiers are accumulated across calls to different RMs.

• Just like in the non-factual ASP representation of regular RMs (see Definition 3.3.2), ϕ̄ rep-

resents the negation of the logical transition function ϕ. The underlying motivation remains:

learning ϕ̄ instead of ϕ makes the search space smaller, which speeds up HRM learning (Chap-

ter 7).

Example 6.3.1. The non-factual ASP representation of the HRM in Figure 6.2b is:


state(u00,M0). state(u10,M0). state(u20,M0). state(u30,M0). state(uA0 ,M0).

call(u00, u
1
0, 1,M0,M1). call(u00, u

2
0, 1,M0,M2). call(u10, u

3
0, 1,M0,M2). call(u20, u

3
0, 1,M0,M1).

call(u30, u
A
0 , 1,M0,M>). ϕ̄(u00, u

1
0, 1,M0, T) : - prop( , T), step(T).

ϕ̄(u30, u
A
0 , 1,M0, T) : - not prop( , T), step(T).

∪{
state(u01,M1). state(u11,M1). state(uA1 ,M1). call(u01, u

1
1, 1,M1,M>). call(u11, u

A
1 , 1,M1,M>).

ϕ̄(u01, u
1
1, 1,M1, T) : - not prop( , T), step(T). ϕ̄(u11, u

A
1 , 1,M1, T) : - not prop( , T), step(T).

}
∪{

state(u02,M2). state(u12,M2). state(uA2 ,M2). call(u02, u
1
2, 1,M2,M>). call(u12, u

A
2 , 1,M2,M>).

ϕ̄(u02, u
1
2, 1,M2, T) : - not prop( , T), step(T). ϕ̄(u12, u

A
2 , 1,M2, T) : - not prop( , T), step(T).

}
.
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As described in Section 3.3.2, non-factual representations represent the logical transition func-

tions using rules, making the verification of structural properties (e.g., determinism) hard. In con-

trast, verifying properties through a factual representation is straightforward since there are no

variable-dependent rules. We define the factual representation of an HRM and exemplify it below.

Definition 6.3.2 (Factual ASP representation of a hierarchy of reward machines). Given the ASP

representation A(H) of a hierarchy of reward machines H, the factual ASP representation AF (H) of

H is the result of mapping the ϕ̄ rules into pos(u, u′, e,M, p) and neg(u, u′, e,M, p) facts expressing

that proposition p appears positively (resp. negatively) in the edge e from state u to state u′ of RM

M . Formally,

AF (H) =



state(u,M). state(u,M).

call(u, u′, e,M,M ′). call(u, u′, e,M,M ′).

pos(u, u′, e,M, p1). ϕ̄(u, u′, e,M, T) : - not prop(p1, T), step(T).
...

...

pos(u, u′, e,M, pn). ϕ̄(u, u′, e,M, T) : - not prop(pn, T), step(T).

neg(u, u′, e,M, pn+1). ϕ̄(u, u′, e,M, T) : - prop(pn+1, T), step(T).
...

...

neg(u, u′, e,M, pm). ϕ̄(u, u′, e,M, T) : - prop(pm, T), step(T).



,

where the rules on the right hand side are those within A(H).

Example 6.3.2. The following rules constitute the factual ASP representation built from the rule

set in Example 6.3.1:


state(u00,M0). state(u10,M0). state(u20,M0). state(u30,M0). state(uA0 ,M0).

call(u00, u
1
0, 1,M0,M1). call(u00, u

2
0, 1,M0,M2). call(u10, u

3
0, 1,M0,M2). call(u20, u

3
0, 1,M0,M1).

call(u30, u
A
0 , 1,M0,M>). neg(u00, u

1
0, 1,M0, ).

pos(u30, u
A
0 , 1,M0, ).

∪{
state(u01,M1). state(u11,M1). state(uA1 ,M1). call(u01, u

1
1, 1,M1,M>). call(u11, u

A
1 , 1,M1,M>).

pos(u01, u
1
1, 1,M1, ). pos(u11, u

A
1 , 1,M1, ).

}
∪{

state(u02,M2). state(u12,M2). state(uA2 ,M2). call(u02, u
1
2, 1,M2,M>). call(u12, u

A
2 , 1,M2,M>).

pos(u02, u
1
2, 1,M2, ). pos(u12, u

A
2 , 1,M2, ).

}
.

Our approach for learning HRMs introduced in Chapter 7, akin to that in Chapter 4, learns a

non-factual representation and maps it into a factual one on which structural properties are verified;

thus, the set of rules for modeling hierarchy traversals are defined over the non-factual representation.

General Rules

The following sets of rules, whose union is denoted by R = ∪5
i=0Ri, encode HRM traversals and the

acceptance/rejection criteria. For simplicity, the initial, accepting, and rejecting states of any RM

Mi are respectively denoted by u0, uA and uR instead of u0
i , u

A
i and uRi since the RM they belong

to is explicitly mentioned in each of the rules.

The rule set R0 contains a rule encoding the inversion of the negation of the logical transition

function ϕ̄. An analogous version of this rule is used in Section 3.3.2 for regular RMs. The ϕ atoms
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include the called RM M2 as an argument, which makes the following rules easier to express.

R0 =
{
ϕ(X, Y, E, M, M2, T) : - not ϕ̄(X, Y, E, M, T), call(X, Y, E, M, M2), step(T).

}
The set of rules R1 introduces the pre sat(u,M, t) atoms, which encode the exit condition (see

Definition 6.1.5) indicating whether a call from state u of RM M can be started at time t. The first

rule corresponds to the base case: if the leaf M> is called, the condition is satisfied if the associated

formula is satisfied. The second rule applies to calls to non-leaf RMs, where we need to satisfy the

context of the call (like in the base case), and also check whether a call from the initial state of the

potentially called RM can be started.

R1 =

{
pre sat(X, M, T) : -ϕ(X, , , M,M>, T).

pre sat(X, M, T) : -ϕ(X, , , M, M2, T), pre sat(u0, M2, T), M2!=M>.

}

The rule set R2 introduces the reachable(u,M, t, t′) atoms, which indicate that state u of RM

M is reached between steps t and t′. The latter step can also be seen as the step the agent is currently

at. The first fact indicates that the initial state of the root RM is reached from step 0 to step 0.

The second rule indicates that the initial state of a non-root RM is reached from step T to step T

(i.e., it is reached anytime). The third rule represents the self-loop transition in the initial state of

the root Mr: the agent stays there if no call can be started at T (i.e., the agent is not moving in the

HRM). The fourth rule is analogous to the third but for the accepting state of the root instead of

the initial state. Remember this is the only accepting state in the HRM that does not return control

to a calling RM. The fifth rule is also similar to the previous ones: it applies to states reached after

TO that are non-accepting, which excludes self-looping in initial states of non-root RMs at the time

of starting them (i.e., self-loops are permitted in the initial state of a non-root RM if we can reach it

afterward by going back to it). The last rule indicates that Y is reached at step T2 in RM M started

at T0 if there is an outgoing transition from the current state X to Y at time T that holds between T

and T2, and state X has been reached between T0 and T. We will later see how δ is defined.

R2 =



reachable(u0,Mr, 0, 0).

reachable(u0, M, T, T) : - state(u0, M), M!=Mr, step(T).

reachable(X, M, T0, T+1) : - reachable(X, M, T0, T), not pre sat(X, M, T),

step(T), X=u0, M=Mr.

reachable(X, M, T0, T+1) : - reachable(X, M, T0, T), not pre sat(X, M, T),

step(T), X=uA, M=Mr.

reachable(X, M, T0, T+1) : - reachable(X, M, T0, T), not pre sat(X, M, T),

step(T), TO<T, X!=uA.

reachable(Y, M, T0, T2) : - reachable(X, M, T0, T), δ(X, Y, M, T, T2).


The rule set R3 introduces two predicates: satisfied and failed. The satisfied(M, t, t′)

atoms indicates that RM M is satisfied if its accepting state uA is reached between steps t and t′.

Likewise, the failed(M, t, t′) atoms indicate that RM M fails if its rejecting state uR is reached

between steps t and t′. These two descriptions correspond to the first and third rules. The second

rule applies to the leaf RM M>, which always returns control immediately; thus, it is always satisfied



116 CHAPTER 6. FORMALISM OF HIERARCHIES OF REWARD MACHINES

between any two consecutive steps.

R3 =


satisfied(M, T0, TE) : - reachable(uA, M, T0, TE).

satisfied(M>, T, T+1) : - step(T).

failed(M, T0, TE) : - reachable(uR, M, T0, TE).


The following set, R4, encodes multi-step transitions within an RM. The δ(u, u′,M, t, t′) atoms

express that the transition from state u to state u′ in RM M is satisfied between steps t and t′.

The first rule indicates that this occurs if the context labeling a call to an RM M2 is satisfied and

that RM is also satisfied (i.e., its accepting state is reached) between these two steps. In contrast,

the second rule is used for the case in which the rejecting state of the called RM is reached between

those steps. In the latter case, we transition to the local rejecting state uR of M (i.e., the state we

would have transitioned to does not matter), which follows from Assumption 6.1.2: rejecting states

are global. The idea of the last rule is that rejection is propagated bottom-up in the HRM.

R4 =

{
δ(X, Y, M, T, T2) : -ϕ(X, Y, , M, M2, T), satisfied(M2, T, T2).

δ(X, uR, M, T, T2) : -ϕ(X, , , M, M2, T), failed(M2, T, T2).

}
.

The last set, R5, encodes acceptance and rejection. Remember that the last(t) atoms indicate

that t is the last step of a trace. The trace is accepted if the root RM is satisfied from the initial step

0 to step T+1 (i.e., the step after the last step of the trace, once the final label has been processed).

In contrast, the trace is rejected if a rejecting state in the hierarchy is reached between these two

same steps.

R5 =

{
accept : - last(T), satisfied(Mr, 0, T+1).

reject : - last(T), failed(Mr, 0, T+1).

}

Unlike the formalism introduced in Section 6.1, the encoding does not model call stacks, which

is costly. Here, the processed trace is known and, therefore, it can be evaluated bottom-up in the

hierarchy. Namely, the encoding evaluates the lowest level RMs on the different subtraces; then, the

resulting evaluations are subsequently used in higher level RMs.

Example 6.3.3. Given the HRM in Figure 6.2b and the trace λ = 〈{ }, { }, {}, { }, { }, { }〉,
the encoding proceeds by checking which subtraces reach an accepting state in each RM. The subtraces

〈{ }, { }〉 and 〈{ }, { }〉 reach the accepting states of M1 and M2, respectively. This information is

leveraged to determine that the accepting state of M0 is reached by calling M1 and M2, as illustrated

below:

〈{ }, { }︸ ︷︷ ︸
M1

, {}, { }, { }︸ ︷︷ ︸
M2

, { }

︸ ︷︷ ︸
M0

〉.

Intuitively, the subtrace 〈{}, { }, { }〉 also reaches the accepting state of M2 (the first label would

perform a loop in the initial state of the RM); however, the fifth rule in R2 prevents this from

happening in order to comply with the definition of HRM traversals.
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P0

step

prop

last

P1

ϕ̄

call

state

P2

ϕ

pre sat

P3

δ

reachable

satisfied

accept

failed

reject

Figure 6.6: Predicate dependencies in the program of Proposition 6.3.1, where the predicates are
grouped by the partitions used in the respective proof. Edges follow the specification from Figure 3.3.

6.3.3 Proof of Correctness

We prove the correctness of the ASP representation in the following lines. The non-factual represen-

tation of the HRMs is used since the traversal rules are defined over this representation. The result

presented here is essential to prove the correctness of the HRM learning task in Chapter 7.

Proposition 6.3.1 (Correctness of the ASP encoding). Given a finite label trace λ∗, where ∗ ∈
{G,D, I}, and an HRM H = 〈M,Mr,P〉 that is valid with respect to λ∗, the program P = A(H) ∪
R∪A(λ∗) has a unique answer set A and (i) accept ∈ A if and only if ∗ = G, and (ii) reject ∈ A
if and only if ∗ = D.

Proof. First, we prove that the program P = A(H) ∪R ∪ A(λ∗), where R =
⋃5
i=0Ri, has a unique

answer set. If P is stratified then it has a unique answer set (see Section 2.2.1); hence, we prove

that P is stratified. The program can be partitioned as P = P0 ∪ P1 ∪ P2 ∪ P3, where

P0 = A(λ∗), P1 = A(H), P2 = R0 ∪R1, P3 = R2 ∪R3 ∪R4 ∪R5.

Analogously to the proof of Proposition 3.3.1, Figure 6.6 graphically proves that this partitioning

complies with the definition of a stratified program (see Section 2.2.1): dashed lines always point

to predicates in lower-indexed partitions, whereas solid lines always point to predicates in the same

partition or lower-indexed partitions.

The unique answer set A = A0 ∪A1 ∪A2 ∪A3, where Ai corresponds to partition Pi, is shown in

Figure 6.7. To simplify the expression, we denote by Mi(λ
∗) the hierarchy traversal using RM Mi

as the root.

We now prove that accept ∈ A if and only if ∗ = G (i.e., the trace achieves the goal). If ∗ = G

then, since the hierarchy is valid with respect to λ∗ (see Definition 6.1.8), the hierarchy traversal

H(λ∗) finishes in the accepting state uA of the root; that is, H(λ∗)[n+ 1] = 〈Mr, u
A
r , ·, ·〉. This

holds if and only if accept ∈ A. The proof showing that reject ∈ A if and only if ∗ = D (i.e.,

the trace reaches a dead-end) is similar to the previous one. If ∗ = D then, since the hierarchy

is valid with respect to λ∗, the hierarchy traversal H(λ∗) finishes in a rejecting state uR; that is,

H(λ∗)[n+ 1] = 〈Mk, u
R, ·, ·〉, where Mk ∈M. This holds if and only if reject ∈ A.
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A0 = {prop(p, t). | 0 ≤ t ≤ n, p ∈ Lt} ∪ {step(t). | 0 ≤ t ≤ n} ∪ {last(n).} ,

A1 =

{state(u,Mi). |Mi ∈M \ {M>}, u ∈ Ui}∪{
call(u, u′, x+ y,Mi,Mj). Mi ∈M \ {M>},Mj ∈M, u, u′ ∈ Ui, ϕi(u, u′,Mj) 6= ⊥,

x =
∑j−1
k=0 |ϕi(u, u′,Mk)|, 1 ≤ y ≤ |ϕi(u, u′,Mj)|

}
∪

ϕ̄(u, u′, x+ y,Mi, t). 0 ≤ t ≤ n,Mi ∈M \ {M>},Mj ∈M, u, u′ ∈ Ui,
ϕi(u, u

′,Mj) 6= ⊥, x =
∑j−1
k=0 |ϕi(u, u′,Mk)|,

1 ≤ y ≤ |ϕi(u, u′,Mj)|, λ∗[t] 6|= ϕi(u, u
′,Mj)[y]

 ,

A2 =


ϕ(u, u′, x+ y,Mi, t). 0 ≤ t ≤ n,Mi ∈M \ {M>},Mj ∈M, u, u′ ∈ Ui,

ϕi(u, u
′,Mj) 6= ⊥, x =

∑j−1
k=0 |ϕi(u, u′,Mk)|,

1 ≤ y ≤ |ϕi(u, u′,Mj)|, λ∗[t] |= ϕi(u, u
′,Mj)[y]

∪{
pre sat(u,Mi, t). 0 ≤ t ≤ n,Mi ∈M \ {M>}, u ∈ Ui, λ∗[t] |= ξi,u,>

}
,

A3 =

{
reachable(u0,Mr, 0, 0).

}
∪{

reachable(u0,Mi, t, t). | 0 ≤ t ≤ n,Mi ∈M \ {M>,Mr}, u0 ∈ Ui
}
∪{

reachable(u,Mr, t1, t2). 0 ≤ t1 < t2 ≤ n+ 1, u ∈ Ur,
H(λ∗[t1:])[t2 − t1] = 〈Mr, u, ·, ·〉

}
∪

reachable(u,Mi, t1, t2). 0 ≤ t1 < t2 ≤ n+ 1,Mi ∈M \ {Mr,M>}, u ∈ Ui,
λ∗[t1] |= ξi,u0,>,
Mi(λ

∗[t1:])[t2 − t1] = 〈Mi, u, ·, ·〉,
Mi(λ

∗[t1:])[t2 − t1 − 1] 6= 〈Mi, u
A, ·, ·〉

∪{
satisfied(Mr, t1, t2) | 0 ≤ t1 < t2 ≤ n+ 1, H(λ∗[t1:])[t2 − t1] = 〈Mr, u

A, ·, ·〉
}

satisfied(Mi, t1, t2). 0 ≤ t1 < t2 ≤ n+ 1,Mi ∈M \ {Mr,M>},
λ∗[t1] |= ξi,u0,>,
Mi(λ

∗[t1:])[t2 − t1] = 〈Mi, u
A, ·, ·〉,

Mi(λ
∗[t1:])[t2 − t1 − 1] 6= 〈Mi, u

A, ·, ·〉

∪
{satisfied(M>, t, t+ 1) | 0 ≤ t ≤ n}∪{
failed(Mr, t1, t2) | 0 ≤ t1 < t2 ≤ n+ 1, H(λ∗[t1:])[t2 − t1] = 〈·, uR, ·, ·〉

}
∪

failed(Mi, t1, t2). 0 ≤ t1 < t2 ≤ n+ 1,Mi ∈M \ {Mr,M>},
λ∗[t1] |= ξi,u0,>,
Mi(λ

∗[t1:])[t2 − t1] = 〈·, uR, ·, ·〉

∪{
δ(u, u′,Mi, t, t+ 1). 0 ≤ t ≤ n,Mi ∈M \ {M>}, u, u′ ∈ Ui,

λ∗[t1] |= ϕi(u, u
′,M>)

}
∪

δ(u, u′,Mi, t1, t2). 0 ≤ t1 < t2 ≤ n+ 1,Mi ∈M \ {M>}, u, u′ ∈ Ui,
∃Mj ∈M \ {M>} s.t. φ = ϕi(u, u

′,Mj), λ
∗[t1] |= ξj,u0,φ,

Mj(λ
∗[t1:])[t2 − t1] = 〈Mj , u

A, ·, ·〉,
Mj(λ

∗[t1:])[t2 − t1 − 1] 6= 〈Mj , u
A, ·, ·〉

∪
δ(u, uR,Mi, t1, t2). Mi ∈M \ {M>}, u ∈ Ui, 0 ≤ t1 < t2 ≤ n+ 1,

∃Mj ∈M \ {M>} s.t. φ = ϕi(u, u
′,Mj), λ

∗[t1] |= ξj,u0,φ,
Mj(λ

∗[t1:])[t2 − t1] = 〈Mk, u
R, ·, ·〉,Mk ∈M

∪{
accept | H(λ∗)[n+ 1] = 〈Mr, u

A, ·, ·〉
}
∪{

reject | H(λ∗)[n+ 1] = 〈Mk, u
R, ·, ·〉,Mk ∈M \ {M>}

}
.

Figure 6.7: Answer sets for each of the partitions in the program P = A(H) ∪R ∪ A(λ∗), where H
is an HRM, R is the set of general rules and λ∗ is a label trace.
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6.3.4 Determinism

The hierarchical transition function δH of an HRM H must be deterministic. To ensure an HRM

is deterministic, as described in Section 6.1, the logical transition functions of the constituent RMs

must be such that a label cannot simultaneously satisfy the contexts and exit conditions associated

with two triplets 〈u, v,Mi〉 and 〈u, v′,Mj〉 such that either (i) v = v′ and i 6= j, or (ii) v 6= v′. Akin

to regular RMs, determinism is guaranteed if the formulas associated with such triplets are mutually

exclusive.

In what follows, we describe how to verify whether the root of an HRM is deterministic using

an ASP technique called saturation (Eiter and Gottlob, 1995). The idea is to check determinism

top-down by selecting two edges from a given state in the root, each associated with a set of literals.

Initially, each set of literals is formed by those in the formula labeling the edge (i.e., the context).

If a selected edge calls a non-leaf RM, we select an edge from the initial state of the called RM,

augment the respective set of literals with the associated formula, and repeat the process until the

leaf RM is called. We then check if the literal sets are mutually exclusive. If there is a pair of

non-mutually exclusive literal sets, the root of the HRM is non-deterministic.

The idea above is represented using the following set of rules built on the factual representation

of an HRM. The first rule states that we keep two saturation IDs, one for each of the edges we select

next and for which mutual exclusivity is checked. The second rule chooses a state X of the root,

whereas the third rule selects two edges from this state and assigns a saturation ID to each of them.

The fourth rule indicates that if one of the edges we have selected so far calls a non-leaf RM, we

select an edge from the initial state of the called RM and create a new edge with the same saturation

ID. The fifth (resp. sixth) rule takes the propositions appearing positively (resp. negatively) for each

set of edges (one per saturation ID). The next three rules indicate that if the edges are mutually

exclusive (i.e., a proposition appears positively in one set and negatively in the other) or they are the

same, then the answer set is saturated. The saturation itself is encoded in the following three rules:

an answer set is saturated by adding every possible ed mtx and root point atoms to the answer

set. Due to the minimality of answer sets in disjunctive answer set programming, this maximal

interpretation can only be an answer set if there is no smaller answer set. This will be the case if

and only if every choice of edges satisfies the condition (i.e., every choice of ed mtx and root point

atoms results in saturation). The constraint encoded in the final rule then discards answer sets in

which saturation did not occur, meaning that the remaining solutions must satisfy the condition.

sat id(1; 2).

root point(X, M) : call(X, , , M, ), M=Mr.

ed mtx((X, Y, E, M, M2), SatID) : call(X, Y, E, M, M2) : - root point(X, M), sat id(SatID).

ed mtx((u0, Y2, E2, M2, M3), SatID) : call(u0, Y2, E2, M2, M3) : - ed mtx(( , , , , M2), SatID), M2!=M>.

pos prop(P, SatID) : - ed mtx((X, Y, E, M, ), SatID), pos(X, Y, E, M, P).

neg prop(P, SatID) : - ed mtx((X, Y, E, M, ), SatID), neg(X, Y, E, M, P).

saturate : - pos prop(P, 1), neg prop(P, 2).

saturate : - pos prop(P, 2), neg prop(P, 1).

saturate : - ed mtx((X, Y, , M, M2), 1), ed mtx((X, Y, , M, M2), 2), root point(X, M).

root point(X, M) : - call(X, , , M, ), saturate, M=Mr.

ed mtx((X, Y, E, M, M2), SatID) : - call(X, Y, E, M, M2), M=Mr, sat id(SatID), saturate.

ed mtx((u0, Y, E, M, M2), SatID) : - call(u0, Y, E, M, M2), sat id(SatID), saturate.

: - not saturate.


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While determinism is only checked in the root of the HRM (and, indirectly, from the initial

states of the subsequently called RMs), the algorithm for learning HRMs described in Chapter 7

learns each constituent RM individually; hence, determinism across the entire HRM is guaranteed.

Alternatively, the second rule can be modified such that the state is not restricted to be one in the

root; however, this would involve checking mutual exclusivity for each state in the HRM, which is

costly (especially in our HRM learning context, where non-root RMs behave deterministically).

6.3.5 Symmetry Breaking

We extend the symmetry breaking method proposed for RMs in Section 3.4.3 to HRMs. The

symmetry breaking is applied to the root only instead of all the constituent RMs. This follows from

the reason described in Section 6.3.4 regarding the rules for verifying determinism, which are also

applied to the root of the HRM only: the HRM learning method described in Chapter 7 learns each

RM individually. Hence, we focus on breaking symmetries in the root. In any case, the extended

method is applicable to each constituent RM separately; thus, verifying whether all RMs follow the

proposed canonical way of indexing states and edges is feasible.

The reward machines we here consider differ from those in Part I: the edges are not only labeled

by formulas, but also by calls to other machines. Therefore, the set of labels that determines a

given RM’s indexing consists of both propositions (and their negations) and the potentially called

RMs. Formally, given a proposition set P, an RM set M, a bijective function f : P → {1, . . . , |P|}
mapping each proposition to a different integer between 1 and |P|, and a bijective function g :M→
{1, . . . , |M|} mapping each RM to a different integer between 1 and |M|, the set of labels is

Lsb =

{f(p) | p ∈ P}∪
{|P|+ g(M) |M ∈M}∪
{|P|+ |M|+ f(p) | p ∈ P}

,

where labels 1, . . . , |P| correspond to propositions, labels |P|+ 1, . . . , |P|+ |M| correspond to RMs,

and labels |P|+ |M|+ 1, . . . , 2|P|+ |M| correspond to the negated propositions. This differs from

the set in Equation 3.1, which did not include labels for RMs. The mapping from propositions and

RMs to integer labels is encoded in ASP using the following atoms:

• symbol id(s, l) indicates that symbol (i.e., proposition or RM) s ∈ P ∪M is associated with

label l.

• num symbols(i) indicates that the number of symbols (propositions and RMs) is i.

• valid sb label(l) indicates that l is a label.

We ground the above atoms according to their descriptions:

{symbol id(p, f(p)). | p ∈ P}∪
{symbol id(M, |P|+ g(M)). |M ∈M}∪
{num symbols(|P|+ |M|).}∪
{valid sb label(l). | 1 ≤ l ≤ 2|P|+ |M|}} .
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To complete the mapping, we map the formulas on the edges into label sets leveraging the factual

representation from Definition 6.3.2. This mapping builds upon the Efficient Alternative Encoding

described in Section 3.4.3, which is modified as follows:

• The rule set below results from that in Equation 3.2. First, the prop id and num props

predicates in the first two rules are replaced with the symbol id and num symbols predicates.

Second, the rules are defined exclusively on the root Mr of the HRM. Third, a new rule is

added to set MID as a label of edge (Y, E) from X if the corresponding RM M is called in that

edge.
label(X, (Y, E), PID) : - pos(X, Y, E,Mr, P), symbol id(P, PID).

label(X, (Y, E), PID+N) : - neg(X, Y, E,Mr, P), symbol id(P, PID), num symbols(N).

label(X, (Y, E), MID) : - call(X, Y, E,Mr, M), symbol id(M, MID).


• The first and third rules in Equation 3.3 are changed by defining them on the root Mr of the

HRM:

1{ed lt(X, (Y, E), (YP, EP)); ed lt(X, (YP, EP), (Y, E))}1 : - ed(X, Y, E,Mr), ed(X, YP, EP,Mr),

(Y, E)<(YP, EP).

: - ed lt(X, Edge1, Edge2), ed lt(X, Edge2, Edge3), not ed lt(X, Edge1, Edge3),

Edge1!=Edge3.

: - ed lt(X, (Y, E), (Y, EP)), ed(X, Y, E,Mr), ed(X, Y, EP,Mr), E>EP.


.

• The second rule in Equation 3.4 is altered by defining it on the root Mr of the HRM:{
edge id(1..κ).

: - ed(X, Y, E,Mr), not ed(X, Y, E−1,Mr), edge id(E), E>1.

}
.

• Equation 3.5 is modified to define the rule on the root Mr of the HRM:

ed sb(X, Y, E) : - ed(X, Y, E,Mr), state id(Y, ).

6.4 Summary

In this chapter, we have laid the foundations for Part II by introducing HRMs, a formalism for

hierarchically composing RMs. We proved that these hierarchies are equivalent to regular RMs;

besides, under certain conditions, the equivalent standard RM can have exponentially more states

and edges than the hierarchy. In the following chapter, we describe exploitation and learning methods

that leverage the decomposition into smaller RMs enabled by hierarchies. The learning method we

propose learns HRMs expressed using the ASP representation presented in this chapter.
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Chapter 7

Learning and Exploiting

Hierarchies of Reward Machines

In this chapter, we introduce a hierarchical RL algorithm for exploiting the structure of a hierarchy of

reward machines (Section 7.1) and a method for learning hierarchies from traces (Section 7.2). These

methods are then combined into a curriculum-based algorithm that interleaves them (Section 7.3).

7.1 Exploiting Hierarchies of Reward Machines

In this section, we describe a method for exploiting hierarchies of reward machines using the options

framework. First, we formalize the types of options we consider (Section 7.1.1). Second, we explain

how these options are selected, updated, and interrupted during an episode (Section 7.1.2). Third,

and finally, we introduce two strategies for efficiently updating the policies of the options in the

hierarchy (Section 7.1.3).

7.1.1 Options

In what follows, we explain how to exploit the temporal structure of an HRM H = 〈M,Mr,P〉
using options. Given an RM Mi ∈M, a state u ∈ Ui and a context Φ ∈ DNFP , the set of available

options in a hierarchy state 〈Mi, u,Φ,Γ〉 is

Ωi,u,Φ =
{
ωj,φi,u,Φ

∣∣∣φ ∈ ϕi(u, u′,Mj), u
′ ∈ Ui,Mj ∈M, φ 6= ⊥

}
;

that is, an option ωj,φi,u,Φ is derived for each non-false disjunct φ of each transition ϕi(u, u
′,Mj),

where u′ ∈ Ui and Mj ∈ M. The stack Γ is not required to define the options. An option can be

one of the following depending on the called machine Mj :

• A formula option if j = > (i.e., the M> is called), which aims to reach a label that satisfies

φ ∧ Φ through primitive actions.

• A call option if j 6= >, which aims to reach an accepting state of the called RM Mj under

context φ ∧ Φ by invoking other options.

123
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In the following paragraphs, we describe the initiation set, the policy, and the termination condition

for each type of option.

Initiation Set

The initiation set of any option ωj,φi,u,Φ is Ii,u,Φ = S; that is, any option available in hierarchy state

〈Mi, u,Φ,Γ〉 can be started in any state. As previously mentioned, the call stack Γ is irrelevant to

defining the options.

Policy

We here describe the policy for each option type and the resulting optimality guarantees. The

policies for both option types are derived from action-value functions approximated by DQNs, being

ε-greedy during training, and greedy during evaluation.

Formula Options. A formula option’s policy πφ∧Φ : S → ∆(A) is derived from an action-value

function qφ∧Φ(s, a;θφ∧Φ) approximated by a DQN with parameters θφ∧Φ, which outputs the value of

each action given an MDP state. The experiences 〈st, a, st+1,Lt+1〉 obtained by all formula options

in the HRM are stored in a single replay buffer D, thus performing intra-option learning. The

Q-learning update uses the following loss function:

E〈st,a,st+1,Lt+1〉∼D

[(
rφ∧Φ(Lt+1) + γ max

a′∈A
qφ∧Φ(st+1, a

′;θ−φ∧Φ)− qφ∧Φ(st, a;θφ∧Φ)

)2
]
, (7.1)

where θ−φ∧Φ are the parameters of a fixed target DQN. The reward rφ∧Φ(Lt+1) is +1 if φ ∧ Φ is

satisfied by label Lt+1 and 0 otherwise; hence, the policy aims to observe a label that satisfied

φ∧Φ. The discounted term of the target becomes 0 when either φ∧Φ is satisfied or the history is a

dead-end history (i.e., sTt+1 = > and sGt+1 = ⊥); akin to Equation 4.2, the latter case assumes that

dead-end histories depend on the last state only.

Each formula option ω>,φi,u,Φ explores using an exploration factor εφ∧Φ, which linearly decreases

with the number of steps performed using the policy induced by qφ∧Φ. Similarly, Kulkarni et al.

(2016) keep an exploration factor for each subgoal, but vary it depending on the option’s success

rather than the number of performed steps.

Call Options. A call option’s policy πi,u,Φ : S → ∆(Ωi,u,Φ) is induced by an option-value function

qi(s, u,Φ, 〈Mj , φ〉;θi) associated with the called RM Mi and approximated by a DQN with param-

eters θi. The DQN outputs the value of each call in the RM given an MDP state, an RM state,

and a context. Each call option explores using an exploration factor εi,u,Φ that linearly decreases

with the number of times an option starting in the triplet 〈Mi, u,Φ〉 terminates. Option experiences

〈st, ωj,φi,u,Φ, st+k〉 are stored in the replay buffer Di associated with the RM Mi where they are defined.

The DQN parameters are updated by performing SMDP Q-learning using the following loss:

E〈st,ωj,φi,u,Φ,st+k〉∼Di

[(
r + γk max

j′,φ′
qi(st+k, u

′,Φ′, 〈Mj′ , φ
′〉;θ−i )− qi(st, u,Φ, 〈Mj , φ〉;θi)

)2
]
,

where
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• θ−i are the parameters of a fixed target DQN;

• k is the number of steps between st and st+k;

• r is the sum of discounted rewards emitted by the reward-transition function ri during this

time;

• u′ and Φ′ are the RM state and context after running the option;

• Mj′ and φ′ correspond to an outgoing transition from u′, i.e. φ′ ∈ ϕi(u′, ·,Mj′); and

• the discounted term becomes 0 if u′ is an accepting or rejecting state.

We make two observations. First, the policies on a given RM are trained to reach an accepting

state in the fewest possible steps (given the selected options’ policies) since, by Assumption 6.1.5,

the reward-transition function of an RM Mi is ri(u, u
′) = 1[u /∈ UAi ∧ u′ ∈ UAi ]; thus, the cumulative

discounted reward r only has a non-zero value of γk−1 when u′ is an accepting state since a reward of

+1 is given after k− 1 steps in that situation. Second, by Definition 6.1.6, the accumulated context

Φ′ becomes > when the hierarchy state changes (i.e., the context of a call is lost once a transition

is taken from the initial state of the called RM); therefore, Φ′ = > if u′ 6= u, and Φ′ = Φ otherwise.

Just like for the metapolicies in Section 4.1.1, the RM states are encoded using one-hot vectors.

A context φ, which is either > or a DNF formula with a single disjunct, is encoded using a vector

where each position corresponds to a proposition p ∈ P whose value is (i) +1 if p appears positively

in φ, (ii) −1 if p appears negatively in φ, or (iii) 0 if p does not appear in φ. Note that if φ = >, the

vector solely consists of zeros. The output of each DQN is masked to avoid considering unavailable

or unsatisfiable1 calls for a given RM state-context pair.

Example 7.1.1. The DQN for M0 in the HRM of Figure 6.2b outputs a value for each possible call,

i.e. 〈M1,¬ 〉, 〈M2,>〉, 〈M1,>〉, and 〈M>, 〉. If the input RM state-context pair is 〈u0
0,>〉, only

the values for 〈M1,¬ 〉 and 〈M2,>〉 are considered since they are the only available calls from u0
0.

Learning a call option’s policy and lower-level option policies at once can be unstable due to

non-stationarity (Levy et al., 2019), e.g. a lower-level option may sometimes fail to achieve its goal.

To relax the issue, experiences are added to the buffer only when options achieve their goal (i.e.,

call options assume lower-level options terminate successfully).

Optimality. The policies will be recursively optimal at best as each subtask is optimized individu-

ally; however, since the action-value functions are approximated, policies may only be approximately

optimal. The result is in line with the optimality of the method described in Section 4.1.1; indeed, the

main difference is that the method presented here makes decisions at arbitrarily many hierarchical

levels instead of at only two levels.

Termination Condition

In general, options terminate when the history is terminal (i.e., a goal or a dead-end history). Ideally,

if the HRM perfectly captures histories, this entails that (i) goal traces reach an accepting state of

the root, and (ii) dead-end traces reach any of the rejecting states in the HRM. In the following

paragraphs, we describe the specific termination conditions of each option type.

1A call is unsatisfiable if the conjunction of its context φ and the input accumulated context Φ cannot be satisfied.
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Formula Options. The termination condition βi,u,Φ of a formula option generalizes that of the

options from Section 4.1.1; namely, instead of checking whether a formula labeling an outgoing

edge from the current state is satisfied, we check whether the exit condition for a hierarchy state

〈Mi, u,Φ, ·〉 is satisfied. Formally,

βi,u,Φ(s) =

1 if l(s) |= ξi,u,Φ;

0 otherwise.

In practice, the agent determines termination using the label emitted by the environment (i.e., it does

not evaluate the labeling function l by itself); moreover, we reduce the condition to checking whether

the hierarchy state has changed, which is equivalent since it means that the previous hierarchy state

has been exited. Note that these options may terminate even if the target formula φ ∧ Φ is not

satisfied since termination is not determined by the formula, but by exiting the hierarchy state

where the option is available.

Call Options. Unlike formula options, call options may remain active after a change in the hier-

archy state; hence, the termination condition must account for the fact that several such changes

might happen before the option ends. Hierarchy states keep track of the active calls in the HRM;

therefore, we can check whether there exists a stack item 〈u, ·,Mi,Mj , φ,Φ〉 that corresponds to

the call option ωj,φi,u,Φ. If such a stack item does not exist, the option terminates since either the

RM Mj called under context φ was not started or its accepting state was reached. For clarity, the

termination of these options is exemplified in Section 7.1.2.

7.1.2 Algorithm

Algorithm 2 shows how options are selected, updated, and interrupted during an episode. Lines 1–3

correspond to the algorithm’s initialization. The initial state is that of the environment, while the

initial hierarchy state is formed by the root RM Mr, its initial state u0
r, an empty context (i.e.,

Φ = >), and an empty call stack. A hierarchical transition is applied to the initial hierarchy state

using the initial label L0, which returns the actual initial hierarchy state based on what the agent

initially observes. The (initially empty) option stack ΩH contains the currently executing options,

where options at the front are the shallowest ones; for instance, the first option in the list is taken

in the root RM. The steps taken during an episode are shown in lines 4–14, which are grouped as

follows:

1. The agent fills the option stack ΩH by selecting options in the HRM from the current hierarchy

state using call option policies until a formula option is chosen (lines 15–25). A formula option

will eventually be selected since HRMs have no circular dependencies by Assumption 6.1.1.

The context is propagated and augmented through the HRM (i.e., the context of the calls

is conjuncted with the propagating context and converted into DNF form). Note that the

context is initially >, and not that of the last option in the option stack. No new options may

be selected if the formula option chosen in a previous step has not terminated yet.

2. The agent chooses an action according to the last option in the option stack (line 6), which

will always be a formula option whose policy maps states into actions. The action is applied,
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and the agent observes the next state and label (line 7). The next hierarchy state is obtained

by applying the hierarchical transition function δH using the observed label (line 8). The

action-value functions associated with formula options’ policies are updated after this step

(line 9).

3. The option stack ΩH is updated by removing those options that have terminated (lines 10,

26–45). The terminated options are saved in a different list Ωβ to update the value functions of

the RMs where they were initiated later on (line 11). The options are terminated as described

in Section 7.1.1. All options terminate if the history is terminal (lines 27–28). Otherwise,

we check options in ΩH from deeper to shallower levels. The first checked option is always a

formula option, which terminates if the hierarchy state has changed (line 40). In contrast, a

call option terminates if it does not appear in the stack (lines 33, 46–51).2 When an option

is found to terminate, it is added to Ωβ and removed from ΩH (lines 35–36, 41–42). If a

non-terminating option is found (lines 37, 43), we stop checking for termination (no higher

level options can have terminated in this case).

4. If at least one option has terminated (line 12), the option stack ΩH is updated such that

it contains all options appearing in the call stack (lines 13, 52–70). By aligning the option

stack with the call stack, we can later update the value functions for options that ended up

being run in hindsight and which would have been otherwise ignored. Options are derived for

the full stack if ΩH is empty (lines 53–54), or for the part of the stack not appearing in ΩH

(lines 56–59). The new derived options (lines 61–70) from the call stack are assumed to start

in the same state as the last terminated option (i.e., the shallowest terminated option, line 63)

and to have been run for the same number of steps too. Crucially, the contexts should be

accumulated accordingly, starting from the context of the last terminated option (line 69).

As a result of the definition of the hierarchical transition function δH , the contexts in the stack

may be DNF formulas with more than one disjunct. In contrast, the contexts associated with

options are either > or DNFs with a single disjunct (remember that an option is formed for

each disjunct). For instance, this occurs if the context is a∨b and {a, b} is observed: since both

disjuncts are satisfied, the context shown in the call stack will be the full disjunction a∨ b. In

the simplest case, the derived option (which, as said before, is associated with a DNF with a

single disjunct or >) can include one of these disjuncts chosen uniformly at random (line 67).

Alternatively, we could memorize all the derived options and perform identical updates for

both once terminated.

Figure 7.1 illustrates the core procedures that constitute the option selection algorithm: (i) fill-

ing the option stack, (ii) selecting an action using the formula option in the option stack, and

(iii) applying the action and updating the value functions and the option stack accordingly.

Examples

We briefly describe some examples of how policy learning is performed in the HRM of Figure 6.2b. We

first enumerate the options in the hierarchy. The formula options are ω>,1,0,¬ , ω>,2,0,>, ω>,1,0,>, ω>,1,1,>,

2We denote by φ ⊆ φ′, where φ, φ′ ∈ DNFP , the fact that all the disjuncts of φ appear in φ′. For instance,
(a ∧ ¬c) ⊆ (a ∧ ¬c) ∨ d. If φ = >, φ′ must also be > for the containment relationship to hold (and vice versa).
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Algorithm 2 Episode execution using an HRM (continues on the next page)

Input: an HRM H = 〈M,Mr,P〉 and an environment Env = 〈S,A, p, r, γ,P, l, τ〉.
1: s0,L0 ← Env.Init() . Initial MDP tuple and label
2: 〈Mi, u,Φ,Γ〉 ← δH(〈Mr, u

0
r,>, []〉,L0) . Initial hierarchy state

3: ΩH ← [] . Initial option stack
4: for each step t = 0, . . . , do
5: ΩH ← FillOptionStack(st, 〈Mi, u,Φ,Γ〉,ΩH) . Expand the option stack
6: a← SelectAction(st,ΩH) . Choose a according to the last option in ΩH

7: st+1,Lt+1 ← Env.Step(a)
8: 〈Mj , u

′,Φ′,Γ′〉 ← δH(〈Mi, u,Φ,Γ〉,Lt+1) . Apply transition function
9: UpdateFormulaValueFunctions(st, a, st+1,Lt+1)

10: Ωβ ,ΩH ← TerminateOptions(ΩH , s, 〈Mi, u,Φ,Γ〉, 〈Mj , u
′,Φ′,Γ′〉)

11: UpdateCallValueFunctions(Ωβ , st+1,Lt+1)
12: if |Ωβ | > 0 then
13: ΩH ← AlignOptionStack(ΩH ,Γ

′,Ωβ)

14: 〈Mi, u,Φ,Γ〉 ← 〈Mj , u
′,Φ′,Γ′〉

15: function FillOptionStack(s, 〈Mi, u, ·,Γ〉,ΩH)
16: Ω′H ← ΩH
17: Φ← > . The context is initially true
18: Mj ←Mi; v ← u . The RM-state pair in which an option is selected
19: while the last option in Ω′H is not a formula option do

20: ωx,φj,v,Φ ← SelectOption(s,Mj , v,Φ) . Select an option (e.g., with ε-greedy)
21: if x 6= > then . If the option is a call option
22: Mj ←Mx; v ← u0

x . Next option is chosen on the called RM’s initial state
23: Φ← DNF(Φ ∧ φ) . Update the context

24: Ω′H ← Ω′H ⊕ ω
x,φ
j,v,Φ . Update the option stack (concatenate new option)

25: return Ω′H
26: function TerminateOptions(ΩH , s, 〈Mi, u,Φ,Γ〉, 〈Mj , u

′,Φ′,Γ′〉)
27: if sT = > then
28: return ΩH , [] . All options terminate

29: Ωβ ← []; Ω′H ← ΩH . Initialize structures
30: while |Ω′H | > 0 do . While the option stack is not empty

31: ωx,φk,v,Ψ ← last option in Ω′H
32: if x 6= > then . If the option is a call option
33: in stack, ← OptionInStack(ωx,φk,v,Ψ,Γ

′)
34: if ¬in stack then
35: Ωβ ← Ωβ ⊕ ωx,φk,v,Ψ . Update the list of terminated options

36: Ω′H ← Ω′H 	 ω
x,φ
k,v,Ψ . Remove the last option from the option stack

37: else
38: break . Stop terminating

39: else
40: if 〈Mi, u,Φ,Γ〉 6= 〈Mj , u

′,Φ′,Γ′〉 then . If the hierarchy state has changed. . .

41: Ωβ ← Ωβ ⊕ ωx,φk,v,Ψ . Update the list of terminated options

42: Ω′H ← Ω′H 	 ω
x,φ
k,v,Ψ . Remove the last option from the option stack

43: else
44: break . Stop terminating

45: return Ωβ ,Ω
′
H
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46: function OptionInStack(ωx,φk,v,Φ,Γ)
47: for l = 0 . . . |Γ| − 1 do
48: 〈uf , ·,Mi,Mj , φ

′,Φ′〉 ← Γl
49: if uf = v ∧ i = k ∧ j = x ∧ φ ⊆ φ′ ∧ Φ ⊆ Φ′ then . The call option is in the call stack
50: return >, l . Return whether it appears in the stack and the index

51: return ⊥,−1

52: function AlignOptionStack(ΩH ,Γ,Ωβ)
53: if |ΩH | = 0 then
54: return AlignOptionStackHelper(ΩH ,Γ,Ωβ , 0)
55: else
56: ωx,φk,v,Φ ← last option in ΩH

57: in stack, stack index← OptionInStack(ωx,φk,v,Φ,Γ)
58: if in stack then
59: return AlignOptionStackHelper(ΩH ,Γ,Ωβ , stack index)

60: return ΩH
61: function AlignOptionStackHelper(ΩH ,Γ,Ωβ , stack index))
62: Ω′H ← ΩH
63: ω·,··,·,Φ ← last option in Ωβ . Shallowest terminated option
64: Φ′ ← Φ . Context initialized from last option
65: for l = stack index . . . |Γ| − 1 do
66: 〈uf , ·,Mi,Mj , φ, ·〉 ← Γl
67: φsel ← Select disjunct from φ (e.g., randomly)

68: Ω′H ← Ω′H ⊕ ω
j,φsel
i,uf ,Φ′ . Append new option to the option stack

69: Φ′ ← DNF(Φ′ ∧ φsel)
70: return Ω′H

qi

s
Mi
u
Φ

qi(s, u,Φ, 〈Mj , φ〉)

qi(s, u,Φ, 〈Mj′ , φ
′〉)

... πi ωj,φi,u,Φ ΩH

j = > yesnou0
j

Mj

φ ∧ Φ

(a) Fill the Option Stack ΩH . Call options are itera-
tively selected until reaching a formula option. When a call
option is chosen, the next option is selected from the initial
state u0

j of the called RM Mj using the accumulated context
φ ∧ Φ.

qφ∧Φ

ω>,φi,u,Φ

s

ΩH

qφ∧Φ(s, a)

qφ∧Φ(s, a′)

... πφ∧Φ a

(b) Select an Action. The formula op-
tion on the option stack ΩH determines the
action a to execute in state s.

s, a mdp s′,L hrm

u

u′ Update ΩH

D
qφ qφ′· · · q0 qm−1

D0 Dm−1

· · ·
· · ·

· · ·
terminated

options

(c) Apply the Action. The selected action a is applied in the environment, producing as a result a tuple
s′ and a label L. The tuple 〈s, a, s′,L〉 is added to the buffer D and the DQNs qφ, . . . , qφ′ for the formulas in
the HRM are updated. Given the new label and the current hierarchy state u, the HRM determines the new
hierarchy state u′. The hierarchy states are used to update the option stack ΩH , the terminated options’
experiences are pushed into the corresponding buffers, and the associated DQNs q0, . . . , qm−1 are updated.

Figure 7.1: The core procedures involved in the policy learning algorithm that exploits HRMs.
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ω>,2,1,>, and ω>,0,3,>. The first option should lead the agent to observe the label { } to satisfy ∧¬ .

The value functions associated with this set of options are q ∧¬ , q , q , q and q . Both ω>,1,1,>

and ω>,2,1,> are associated with q . Conversely, the call options are ω1,¬
0,0,>, ω2,>

0,0,>, ω2,>
0,1,>, and ω1,>

0,2,>,

where the first one achieves its local goal if formula options ω>,1,0,¬ and ω>,1,1,> sequentially achieve

theirs. The associated value functions are q0, q1 and q2. Both ω2,>
0,0,> and ω2,>

0,1,> are associated with

q2. Examples 7.1.2 and 7.1.3 describe a few steps of the option selection algorithm in two different

scenarios given the grid instance from Figure 6.1.

Example 7.1.2. In this scenario, we observe what occurs when all chosen options are run to

completion (i.e., until their local goals are achieved):

1. The initial hierarchy state is 〈M0, u
0
0,>, []〉 and the option stack ΩH is empty. We select

options to fill ΩH . The first option is chosen from u0
0 in M0 using a policy induced by q0. At

this state, the available options are ω1,¬
0,0,> and ω2,>

0,0,>. Let us assume that the former is chosen.

Then an option from the initial state of M1 under context ¬ is chosen, which can only be

ω>,1,0,¬ . Since this option is a formula option (the call is made to M>), no more options are

selected and the option stack is ΩH = 〈ω1,¬
0,0,>, ω

>,
1,0,¬ 〉.

2. The agent selects options according to the formula option in ΩH , ω>,1,0,¬ , whose policy is

induced by q ∧¬ . Let us assume that the policy tells the agent to rotate right. Since the label

at this location is empty, the hierarchy state remains the same; therefore, no options terminate,

and the option stack does not change.

3. Let us assume that the agent moves forward twice, thus observing { }. The hierarchy state then

becomes 〈M1, u
1
1,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉 (see Example 6.1.5 for a step-by-step application

of the hierarchical transition function). We check which options in ΩH have terminated starting

from the last chosen one. The formula option ω>,1,0,¬ terminates because the hierarchy state

has changed. In contrast, the call option ω1,¬
0,0,> does not terminate since there is an item in the

call stack, 〈u0
0, u

1
0,M0,M1,¬ ,>〉, that it can be mapped to (i.e., the option is still running).

4. An experience 〈s, ω>,1,0,¬ , s′〉 is formed for the terminated option, where s and s′ are the

observed tuples on initiation and termination respectively. This tuple is added to the replay

buffer associated with the RM where the option appears, D1, since it achieved its goal (i.e., a

label that satisfied ∧ ¬ was observed).

5. We align ΩH with the new stack. In this case, ΩH remains unchanged since its only option

can be mapped into an item of the new stack.

6. We start a new step. Since the option stack does not contain a formula option, we select new

options from the current hierarchy state according to a policy induced by q1. In this case, there

is a single eligible option: ω>,1,1,>.

Example 7.1.3. In this scenario, we observe what occurs when the HRM traversal differs from the

options chosen by the agent:

1. The initial step is like the one in Example 7.1.2, but we assume ω2,>
0,0,> is selected instead.

Then, since this is a call option, an option from the initial state of M2 under context > is

chosen, which can only be ω>,2,0,>. The option stack thus becomes ΩH = 〈ω2,>
0,0,>, ω

>,
2,0,>〉.
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2. Let us assume that by taking actions according to ω>,2,0,> we end up observing { }. Like

in Example 7.1.2, the hierarchy state becomes 〈M1, u
1
1,>, [〈u0

0, u
1
0,M0,M1,¬ ,>〉]〉. We check

which options in ΩH have terminated. The formula option ω>,2,0,> terminates since the hierarchy

state has changed, and the call option ω2,>
0,0,> also terminates since it cannot be mapped into an

item of the call stack. Intuitively, these options should finish since the HRM is being traversed

through a path different from that chosen by the agent.

3. The replay buffers are not updated for these options since they have not achieved their local

goals.

4. The option stack ΩH is aligned with the updated call stack. The only item of the stack

〈u0
0, u

1
0,M0,M1,¬ ,>〉 can be mapped into option ω1,¬

0,0,>. We assume that this option starts

on the same tuple s and that it has run for the same number of steps as the last terminated

option ω2,>
0,0,>.

7.1.3 Implementation

We describe two strategies for efficiently updating the value functions for the formulas appearing in

the hierarchies.

Action-Value Function Update Regime

For efficiency, the entire set of action-value functions associated with formula options is not updated

after each step; instead, only some of these functions are updated. Both approaches lead to similar

convergence rates, but the latter is less costly. To determine the set of value functions to update, we

keep (i) an update counter cφ for each function qφ and (ii) a global counter c (i.e., the total number

updates), and compute the probability pφ of choosing qφ for an update as:

pφ =
sφ∑
φ′ sφ′

,where sφ = c− cφ − 1.

A fixed number of value functions are selected without replacement using the resulting probability

distribution, which prioritizes value functions with fewer updates (intuitively, the estimates produced

by such functions are less precise and require more training). Notably, only the value functions in

the current HRM are considered for selection.

The Formula Tree

Each formula option’s policy is induced by an action-value function associated with a formula, as

described in Section 7.1.1. In domains where certain proposition sets cannot occur, it is unnecessary

to consider formulas that cover some of these sets. For instance, in a domain where two propositions

a and b cannot be simultaneously observed (i.e., it is impossible to observe {a, b}), formulas such as

a∧¬b or b∧¬a could instead be represented by the more abstract formulas a or b; therefore, a∧¬b
and a could be both associated with an action-value function qa, whereas b∧¬a and b could be both

associated with an action-value function qb. Reducing the number of value functions makes learning

more efficient, especially when only a subset of them are updated, as explained at the beginning of

this section.
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>

a

a ∧ ¬ca ∧ ¬b

a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c ∧ ¬d
(a) Tree for L = {{a}, {b}, {c}, {d}}.

>

a ∧ ¬c

a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c ∧ ¬d

a

a ∧ ¬b

(b) Tree for L = {{a}, {b}, {c}, {d}, {a, c}}.

Figure 7.2: Examples of formula trees for different sets of labels. The node a ∧ ¬b ∧ ¬c in (a) could
have been a child of a ∧ ¬c instead (the parent depends on the insertion order).

We represent relationships between formulas using a formula tree, which arranges a set of formulas

in a tree structure. Formally, given a set of propositions P, a formula tree is a tuple 〈F , Fr,L〉, where

F is a set of nodes, each associated with a formula; Fr ∈ F is the root of the tree and it is associated

with the formula >; and L ⊆ (2P)
∗

is a set of labels. All the nodes in the tree except for the root

are associated with conjunctions. Let ν(X) ⊆ 2P∪P̄ , where P̄ = {¬p | p ∈ P}, denote the set of

literals of a formula X; for instance, if X = a ∧ ¬b, then ν(X) = {a,¬b}. A formula X subsumes

a formula Y if (1) X = >, or (2.i) ν(X) ⊆ ν(Y ) and (2.ii) for all labels L ∈ L, either L |= X and

L |= Y , or L 6|= X and L 6|= Y . Case (2) indicates that Y is a special case of X (it adds literals but

is satisfied by exactly the same labels). The tree is organized such that the formula at a given node

subsumes all its descendants. The children of the root determine the set of action-value functions.

During the agent-environment interaction, the formula tree is updated if (i) a new formula

appears in the learned HRMs, or (ii) a new label is observed. Algorithm 3 contains the pseudo-code

for updating the tree in these two cases. When a new formula is added (line 1), we create a node

for the formula (line 2) and add it to the tree. The insertion place is determined by exploring the

tree top-down from the root Fr (lines 3–19). First, we check whether a child of the current node

subsumes the new node (line 7). If such a node exists, then we go down this path (lines 8–9);

otherwise, the new node is going to be a child of the current node (lines 16–17). In the latter case,

in addition, all those children nodes of the current node that are subsumed by the new node need to

become children of the new node (lines 11–15). The other core case in which the tree may need an

update occurs when a new label is observed (lines 20–25) since we need to make sure that parenting

relationships comply with the set of labels L. First, we find nodes inconsistent with the new label:

a parenting relationship is broken (line 39) when the formula of the parent non-root node is satisfied

by the label but the formula of the child node is not (or vice versa). Once the inconsistent nodes

are found, we remove their current parenting relationship (lines 45–46) and reinsert them (line 47).

Example 7.1.4. Figure 7.2 shows two simple examples of formula trees. The formula tree in (b)

results from adding the label {a, c} to the label set: the formula a stops subsuming a∧¬c (i.e., their

truth values differ for the new label), and the latter hence becomes a child of the root. The action-

value functions are qa in (a), and qa and qa∧¬c in (b).
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Algorithm 3 Formula tree operations

Input: a formula tree 〈F , Fr,L〉, where F is a set of nodes, Fr ∈ F is the root node (associated
with the formula >), and L is a set of labels.

1: function AddFormula(f)
2: AddNode(CreateNode(f))

3: function AddNode(new node)
4: current node← Fr
5: added node← ⊥
6: while added node = ⊥ do
7: child node← FindSubsumingChild(current node, new node)
8: if child node 6= nil then . Keep exploring down this path
9: current node← child node

10: else . Insert the node
11: subsumed children← GetSubsumedChildren(current node, new node)
12: new node.children← new node.children ∪ subsumed children
13: for child ∈ subsumed children do
14: current node.children← current node.children \ {child}
15: child.parent← new node

16: current node.children← current node.children ∪ {new node}
17: new node.parent← current node
18: added node← >
19: F ← F ∪ {new node}
20: function OnLabel(L)
21: L← L ∪ {L}
22: inconsistent nodes← {}
23: for child ∈ Fr.children do
24: FindInconsistentNodes(child,L, inconsistent nodes)

25: ReinsertInconsistentNodes(inconsistent nodes)

26: function FindSubsumingChild(current node, new node)
27: for child ∈ current node.children do
28: if child.formula subsumes new node.formula then
29: return child
30: return nil
31: function GetSubsumedChildren(current node, new node)
32: subsumed children← {}
33: for child ∈ current node.children do
34: if new node.formula subsumes child.formula then
35: subsumed children← subsumed children ∪ {new node}
36: return subsumed children
37: function FindInconsistentNodes(current node, L, inconsistent nodes)
38: for child ∈ current node.children do
39: if L |= current node.formula⊕ L |= child.formula then
40: inconsistent nodes← inconsistent nodes ∪ {child}
41: else
42: FindInconsistentNodes(child, L, inconsistent nodes)

43: function ReinsertInconsistentNodes(inconsistent nodes)
44: for node ∈ inconsistent nodes do
45: node.parent.children← node.parent.children \ {node}
46: node.parent← nil
47: AddNode(node)
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7.2 Learning Hierarchies of Reward Machines from Traces

In this section, we formalize the task of learning a hierarchy of reward machines from traces (Sec-

tion 7.2.1) and introduce a method for solving this task using ILASP (Section 7.2.2).

7.2.1 The Hierarchy of Reward Machines Learning Task

We formalize the task of learning a hierarchy of reward machines from traces as learning the root

of a hierarchy given a set of callable RMs; that is, we look for a way of hierarchically composing

existing RMs such that the learned HRM is valid with respect to a set of traces.

Definition 7.2.1 (HRM learning task). An HRM learning task is a tuple TH = 〈r,U ,P,M,MC ,
u0, uA, uR,Λ, κ〉, where

• r is the index of the root RM in the HRM;

• U ⊇ {u0, uA, uR} is a set of states of the root RM, which always contains an initial state u0,

an accepting state uA, and a rejecting state uR;

• P is a set of propositions;

• M⊇ {M>} is a set of RMs that always includes the leaf RM;

• MC ⊆M is a set of callable RMs;

• Λ = ΛG ∪ ΛD ∪ ΛI is a set of traces; and

• κ is the maximum number of directed edges from a state u ∈ U to another state u′ ∈ U \ {u}.

An HRM H = 〈M∪{Mr},Mr,P〉 is a solution of TH if and only if it is valid with respect to all the

traces in Λ; that is, if and only if it accept all goal traces in ΛG, rejects all dead-end traces in ΛD,

and does not accept nor reject any incomplete trace in ΛI .

The HRM learning task differs from the RM learning task (see Definition 4.2.1) in that (i) the

learned RM is associated with an index r, and (ii) the learned RM calls other RMs. Following

Assumption 6.3.1, without loss of generality, the learned RM has a single accepting state and a

single rejecting state.3 We also make the following assumptions about the set of RMs M to ensure

the resulting HRM is well-formed.

Assumption 7.2.1. All RMs reachable from RMs in MC are in M.

Assumption 7.2.2. All RMs in M are deterministic.

Assumption 7.2.3. All RMs in M are defined over the same proposition set P or a subset of it.

3In practice, as described in Section 4.2.1, the accepting (resp. rejecting) state is not considered unless the set of
goal (resp. dead-end) traces is non-empty.
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7.2.2 Solving the Hierarchy of Reward Machines Learning Task with

ILASP

Given an HRM learning task TH , we map it into an ILASP learning task A(TH) = 〈B,SM, 〈E+, ∅〉〉
and use the ILASP system to find an inductive solution Aϕ(Mr) ⊆ SM that covers the examples.

Like in Section 4.2.2, we do not use negative examples (E− = ∅). We define the components of

A(TH) below.

Background Knowledge

The background knowledge B = BU ∪ BM ∪ R is a set of rules that describe the behavior of the

HRM. The set BU consists of state(u,Mr) facts for each state u ∈ U of the root RM with index r

we aim to induce, whereas BM =
⋃
Mi∈M\{M>} A(Mi) contains the ASP representations of all RMs.

Finally, R is the set of general rules introduced in Section 6.3.2 defining how HRMs are traversed

by a trace. Importantly, the index of the root r in these rules must correspond to the one used in

TH .

Hypothesis Space

The hypothesis space SM contains all call and ϕ̄ rules that characterize a transition from a non-

terminal state u ∈ U \ {uA, uR} to a different state u′ ∈ U \ {u} using edge e ∈ {1, . . . , κ} by calling

RM M ∈MC . Formally, it is defined as

SM =


call(u, u′, e,Mr,M). u ∈ U \

{
uA, uR

}
,

ϕ̄(u, u′, e,Mr, T) : - prop(p, T), step(T). u′ ∈ U \ {u} , e ∈ {1, . . . , κ},
ϕ̄(u, u′, e,Mr, T) : - not prop(p, T), step(T). M ∈MC , p ∈ P

 .

Learning the negation ϕ̄ of the logical transition function ϕ offers more flexibility than learning the

latter directly. We refer the reader to the analogous subsection in Section 4.2.2 for specific details.

Example Sets

The set of positive examples E+ is defined as in Section 4.2.2.

Correctness of the Learning Task

The following theorem captures the correctness of the HRM learning task.

Theorem 7.2.1. Given an HRM learning task TH = 〈r,U ,P,M,MC , u0, uA, uR,Λ, κ〉, an HRM

H = 〈M ∪ {Mr},Mr,P〉 is a solution of TH if and only if Aϕ(Mr) is an inductive solution of

A(TH) = 〈B,SM, 〈E+, ∅〉〉.

Proof. Assume H is a solution of TH .

⇐⇒ H is valid with respect to all traces in Λ (i.e., H accepts all traces in ΛG, rejects all traces

in ΛD and does not accept nor reject any trace in ΛI).

⇐⇒ By Proposition 6.3.1, for each trace λ∗ ∈ Λ∗ where ∗ ∈ {G,D, I}, A(H) ∪ R ∪ A(λ∗) has

a unique answer set A and (i) accept ∈ A if and only if ∗ = G, and (ii) reject ∈ A if and only if

∗ = D.
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⇐⇒ For each example e ∈ E+, R∪ A(H) accepts e.

⇐⇒ For each example e ∈ E+, B ∪ Aϕ(Mr) accepts e. The two programs are identical:

R∪ A(H) = R∪ A(H)

= R∪
⋃

Mi∈M\{M>}

A(Mi)

= R∪
⋃

Mi∈M\{M>,Mr}

A(Mi) ∪ A(Mr)

= R∪ BM ∪ AU (Mr) ∪ Aϕ(Mr)

= R∪ BM ∪ BU ∪ Aϕ(Mr)

= B ∪ Aϕ(Mr).

⇐⇒ Aϕ(Mr) is an inductive solution of A(TH).

Enforcement of Structural Properties

The hypothesis space of the HRM learning task presented above potentially considers symmetric

solutions as well as solutions with non-deterministic roots. Discarding symmetric solutions from

the hypothesis space enables a faster search, whereas ruling out non-deterministic roots results in

well-formed HRMs. Analogously to the learning methodology for regular RMs (see Section 4.2.2),

we enforce the determinism and symmetry breaking constraints from Sections 6.3.4–6.3.5 during the

search by including them (along with the mapping to a factual representation) in the learning task

through meta-program injection (Law et al., 2018).

The following constraints are also enforced in the learning task to learn sensible HRMs. The first

rule prevents an edge from being labeled with calls to two different RMs. The second rule prevents

edges from being labeled with the same literal positively and negatively.{
: - call(X, Y, E, M, M2), call(X, Y, E, M, M3), M2!=M3.

: - pos(X, Y, E, M, P), neg(X, Y, E, M, P).

}

7.3 Interleaved Learning

We here describe LHRM, a method that interleaves the exploitation of HRMs with their learning

from interaction. We consider a multi-task setting. Given a set of tasks T and a set of instances I
(e.g., grids) of an environment, the agent learns (i) an HRM for each task using traces from several

instances, and (ii) policies that generalize to the different task-instance pairs. Namely, the agent

interacts with T × I labeled MDPs. The learning proceeds from simpler to harder tasks such that

HRMs for the latter build on the former. We make the following assumptions on the MDPs.

Assumption 7.3.1. All MDPs share propositions P and actions A, and those defined on a given

instance share states S and labeling function l.

Assumption 7.3.2. Dead-end histories are determined by the last state only.

Assumption 7.3.3. The root’s height of a task’s HRM (or task level, for brevity) is known.
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Assumption 7.3.1 resembles the experimental setup described in Section 5.1.1; indeed, likewise,

while the termination function differs for each task-instance pair since it depends on history, the

traces across instances for a given task are commonly categorized. Assumption 7.3.2 emerges from

Equation 7.1, which implicitly makes this assumption by setting the discounted term to 0 when the

history is a dead-end history. When the assumption does not hold, learning might become unstable

since the discounted term is not always canceled. By this assumption, the dead-end histories for a

given instance are common across tasks, which stabilizes policy learning since the discounted term

is always canceled under the same condition.

In what follows, we introduce the building blocks of LHRM. First, we describe a curriculum

learning methodology for learning the HRMs from lower to higher levels (Section 7.3.1). Then, we

describe how the exploitation of the HRMs is interleaved with their learning (Section 7.3.2).

7.3.1 Curriculum Learning

LHRM learns the tasks’ HRMs from lower to higher levels following a curriculum learning (Bengio

et al., 2009) method due to Pierrot et al. (2019). By Assumption 7.3.3, the level of each task is

known; for instance, Table 6.1 shows the level of each CraftWorld task. Formally, let f : T→ N
be a function that maps each task to a level, and ι ∈ N be the currently active level. For clarity, we

provide a high-level description of the method followed by an explanation of its two key steps.

Overview

Before starting an episode, LHRM selects an MDP Mij , where 〈i, j〉 ∈ T × I. Initially, only level 1

tasks can be chosen. The probability of selecting an MDP Mij is determined by an estimate of

the average undiscounted return R̄ij obtained by the agent, with lower returns mapped to higher

probabilities. When the minimum average return across MDPs up to the current level ι surpasses

a given threshold, ι increases by 1, ensuring the learned HRMs and their associated policies are

reusable in higher level tasks.

Task-Instance Selection

The selection of a labeled MDP Mij at the beginning of an episode is performed by first selecting a

task i ∈ T and then selecting an instance j ∈ I. The probabilities used in each choice are determined

by computing a score cij = 1 − R̄ij for each task-instance pair based on the estimated average

undiscounted returns. This scoring function (Andreas et al., 2017) assumes that the returns range

between 0 and 1, which is true in our setting by Assumption 6.1.5. Higher probabilities are assigned

to higher scores; hence, tasks and instances where the agent performs poorly are more likely to be

selected.

The probability pi of choosing a task i ∈ T is computed as

pi =


max
j∈I

cij∑
k∈T|f(k)≤ι

max
j∈I

ckj
if f(i) ≤ ι;

0 otherwise.

That is, the probability is non-zero only if the level of i, f(i), is lower or equal than the currently
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Figure 7.3: Overview of the LHRM algorithm (see main text for a description).

active level. For each task in a level lower or equal than ι, the lowest score across instances is taken

as a representative of the agent’s performance for that task, and higher probabilities are assigned to

tasks for which there is some instance where the agent performs worse.

Having selected a task i ∈ T, the probability qj of choosing an instance j ∈ I is computed

similarly:

qj =
cij∑

k∈I
cik

.

That is, instances where the agent performs worse are more likely to be chosen.

Return Estimate Update

The average undiscounted return R̄ij for each labeled MDP Mij such that f(i) ≤ ι (i.e., an MDP

whose corresponding task is in an active level) is periodically updated as R̄ij ← βR̄ij + (1 − β)R,

where β ∈ [0, 1] is a hyperparameter and R is the undiscounted return obtained by the greedy policy

in a single evaluation episode.

7.3.2 Interleaving Algorithm

LHRM interleaves the learning of HRMs with their exploitation akin to ISA (see Section 4.3).

Learning an HRM consists of learning its root, as described in Section 7.2; therefore, given a set of

tasks, LHRM essentially performs ISA for each task in the set and enables reusing previously learned

RMs within other RMs through calls. Given the similarity between LHRM and ISA, we focus on

providing a high-level overview of the algorithm, describing some optimizations for enhancing the

algorithm’s performance and restating a property of ISA that also characterizes LHRM.

Overview

Figure 7.3 illustrates the core blocks of the algorithm. Given a set of tasks and a set of instances,

the curriculum selects a task-instance MDP at the start of an episode, and the HRM for the chosen

task is taken from the bank of HRMs. Initially, the HRM’s root of each task consists of 3 states (the

initial, accepting, and rejecting states) and neither accepts nor rejects anything. At each step, the

agent observes a tuple st and a label Lt from the task-instance MDP, and performs an action at+1.

The label is used to (i) determine the next hierarchy state ut+1 and the reward rt+1, and (ii) update

the trace 〈L0, . . . ,Lt〉. When the current HRM is not valid with respect to the trace (i.e., the trace
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is a counterexample), a new HRM is learned using ILASP. By default, the learned root RM can

call any RM from a lower level task. If an HRM that covers the observed counterexamples cannot

be learned, the number of states in the root increases by 1; hence, the root RM is guaranteed to

be minimal for a specific value of κ. When an HRM for a task i ∈ T is learned, the current level

is set to that of i, and the estimated returns R̄ij are reset to 0 for all instances j ∈ I; therefore,

returns depend on the current HRM only, ensuring that the level only increases once the policies

associated with HRMs in active levels are effective.4 The curriculum, as described in Section 7.3.1,

is periodically updated with undiscounted episode returns.

Properties

Theorem 4.3.1, which states that there will only be a finite number of RM learning steps before ISA

converges to a target RM (or an equivalent one), is applicable to LHRM since the hypothesis space is

still finite (i.e., the number of possible root RMs is finite even though other RMs can now be called).

We emphasize that the hypothesis space is not constrained by the set of callable RMs as long as

all propositions appearing in the traces can be used to label calls to the leaf RM. Furthermore, as

described in algorithm overview, the learned root is guaranteed to be minimal for a specific value

of κ since an iterative deepening strategy on the number of states is followed.

Optimizations

The following are some optimizations we introduce to enhance LHRM performance.

Learning Initial HRMs from Trace Sets. ISA learns a first RM from a single (counterexample)

trace, while other contemporary RM learning methods (Toro Icarte et al., 2019; Xu et al., 2020;

Hasanbeig et al., 2021) learn a first RM from a set of traces. LHRM follows the latter strategy to

learn a first HRM with a slight change: it starts collecting a set of ρ goal traces and, once they are

all collected, it employs the ρs shortest ones to learn the HRM.

Exploration with Options. LHRM leverages options from lower level HRMs to collect goal traces

for learning the first HRM; specifically, if no option is being run, an option is selected uniformly at

random and performed greedily until it terminates. Options enable exploring the environment more

efficiently than by performing random walks with primitive actions; thus, they ease the observation

of goal traces, especially in tasks where achieving the goal is challenging.

7.4 Summary

In this chapter, we introduced algorithms that leverage the composability enabled by hierarchies

of reward machines. First, we presented a method for exploiting the hierarchies using the options

framework. The formulas and RMs in the hierarchy constituted independently solvable (and, hence,

reusable) subtasks. Second, we described a method for learning an HRM from traces using the

ILASP inductive logic programming system. Third, and finally, we devised LHRM, a curriculum-

based algorithm that interleaves the presented exploitation and learning methods. Given a list of

4Resetting the returns to 0 is essential when the level of i is lower than the current level; otherwise, even if the
current level is set to that of i, it is immediately increased since the (unchanged) returns remain above the threshold.
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tasks, LHRM learns an HRM for each task such that HRMs for complex tasks reuse those learned

for simpler tasks.



Chapter 8

Evaluation of Hierarchies of

Reward Machines

In this chapter, we evaluate the policy and HRM learning approaches described in Chapter 7. First,

we describe the common experimental setup across experiments, including the employed domains

and how results are reported (Section 8.1). Second, we show that interleaving the learning and

exploitation of HRMs produces more effective policies than memoryless and LSTM-based approaches

(Section 8.2). Third, we analyze how learning HRMs compares to learning RMs using different

approaches (Section 8.3). Finally, we examine whether learning policies in handcrafted HRMs results

in an improvement over learning policies in handcrafted RMs (Section 8.4). The code is available at

https://github.com/ertsiger/hrm-learning.

8.1 Experimental Setup

This section describes our experimental setup by first introducing the domains we consider (Sec-

tion 8.1.1). Next, we enumerate the hyperparameters of our approach and some of the baselines,

and explain some of the restrictions on the HRM learning process (Section 8.1.2). Finally, we detail

how the results are reported (Section 8.1.3).

8.1.1 Domains

We describe the domains used in our evaluation, the instance types we consider and how they are

generated, the tasks for which HRMs will be learned and exploited, and the associated network

architectures.

CraftWorld

The specification of this domain is described in Section 6.1. The implementation is based on Mini-

Grid (Chevalier-Boisvert et al., 2023), thus inheriting many of its features. At each step, the agent

observes a W ×H×3 tensor, where W and H are the width and height of the grid. The three chan-

nels contain the object IDs, the color IDs, and object state IDs (including the agent’s orientation),

respectively. Each object we define (except for the lava , which already existed in MiniGrid) has
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Figure 8.1: An instance of the CraftWorld grid in the FRL setting.

its own object and color IDs. Before providing the agent with the state, the content of all matrices

is scaled between −1 and +1.

Instance Types. We consider four grid types: open plan 7× 7 grids (OP, Figure 6.1), open plan

7× 7 grids with a lava location (OPL), 13× 13 grids with four rooms (FR; Sutton et al., 1999), and

13 × 13 grids with four rooms and a lava location per room (FRL, Figure 8.1). The lava must be

avoided.

Instance Generation. The grids are randomly generated. In all settings (OP, OPL, FR, FRL),

the agent and the objects are randomly assigned an unoccupied position. In the case of FR and

FRL, no object occupies a position between rooms or its adjoining positions. There is a single object

per object type (i.e., proposition) in OP and OPL, whereas there can be one or two per type in

FR and FRL. Finally, there is a single randomly placed lava location in OPL (like the rest of the

propositions); in contrast, in FRL, there are four fixed lava locations placed in the intersections

between doors, as shown in Figure 8.1.

Tasks. The tasks we consider are listed in Table 6.1. We refer the reader to Appendix B.1 for an

illustration of the HRMs for each task.

Network Architectures. The networks are DDQNs consisting of a 3-layer convolutional neural

network (CNN) with 16, 32, and 32 filters, respectively. All kernels are 2×2 and use a stride of 1. In

FR and FRL instances, there is a max pooling layer with kernel size 2×2 after the first convolutional

layer. This part of the architecture is based on that by Igl et al. (2019) and Jiang et al. (2021), who

also employ MiniGrid using the full view of the grid. The remainder of the DQN depends on the

policy type (see Section 7.1.1):

• In formula-associated DQNs, the CNN’s output is fed to a 3-layer multilayer perceptron (MLP)

where the hidden layer has 256 rectifier units and the output layer has a single output for each

action.
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Table 8.1: List of WaterWorld tasks. Descriptions follow the nomenclature in Table 6.1.

Task h Description Task h Description

rg 1 r ; g rg&my 2 rg & my
bc 1 b ; c rgb 2 rg ; b
my 1 m ; y cmy 2 c ; my
rg&bc 2 rg & bc rgb&cmy 3 rgb & cmy
bc&my 2 bc & my

• In RM-associated DQNs, the output of the CNN is extended with the encoding of the RM

state and the context (see Section 7.1.1) before being fed to a 3-layer MLP where the hidden

layer has 256 rectifier units, and the output layer has a single output for each call in the RM.

WaterWorld

The specification and implementation of this domain are described in Section 5.4.

Instance Types. There are two types of instances: without dead-ends (WOD) and with dead-

ends (WD). The former follows the standard WaterWorld specification given in Section 5.4. In

contrast, the latter includes two additional balls of a new color that must be avoided; therefore, the

new color incurs a new proposition, and dead-end histories are observable.

Instance Generation. Both WOD and WD instances are generated as described in Section 5.4.1.

Tasks. The tasks we consider are listed in Table 8.1. We emphasize two important aspects regard-

ing their specification:

• Subtasks in a sequence cannot be completed simultaneously, unlike those in Section 5.4.2. For

instance, let us consider the rg task and the trace λ = 〈{}, {r, g}〉. Following the specification

from Section 5.4.2, λ is a goal trace. However, λ is not a goal trace here since r and g must be

satisfied at different steps; therefore, λ must be extended with a label containing g to become

a goal trace, e.g. 〈{}, {r, g}, {r, g}〉 and 〈{}, {r, g}, {r}, {g}〉 are goal traces for rg.

This specification feature ensures that the HRMs for tasks with h > 2 can be represented

in terms of independent lower level HRMs. For example, under the specification from Sec-

tion 5.4.2, the label {r, g, b} completes subtask rg and partially completes bc in a single step,

which does not enable reusing the HRMs for these subtasks; that is, the HRM would need to

be flat with a single transition from the initial state labeled r ∧ g ∧ b ∧ ¬c.

• Subtasks that can be performed in any order must be such that they do not take precedence

over each other. Let us consider the task rg&bc and a label L ⊇ {r, b} to exemplify it. Upon

observing L, neither the subtask rg nor the subtask bc should be started; that is, one is

not prioritized to start over the other. Call contexts break these preferences; for instance, rg

requires not to observe b to be started and, likewise, bc requires not to observe r to be started.

We refer the reader to Appendix B.1 for an illustration of the HRMs for each task.
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Network Architectures. The architectures for WaterWorld are a simple modification of the

ones described in Section 5.4.3. Formula-associated DQNs consist of a 5-layer MLP, where each

of the 3 hidden layers has 512 rectifier units; in contrast, RM-associated networks share the same

architecture but, like in CraftWorld, the input consists of the state from the environment and

encodings for the RM state and the context.

8.1.2 Hyperparameters and Restrictions

We here enumerate and describe the hyperparameters in our evaluation, and introduce some practical

constraints on the learnable HRMs.

Hyperparameters

Table 8.2 lists the hyperparameters for our approach and other methods (DRQN, CRM) used in the

evaluation.

The HRMs are learned using ILASP2. The calls to the underlying ASP solver are made using the

argument --opt-mode=ignore, which reduces the search time since no optimization is made upon

calling ILASP; hence, non-optimal solutions might be learned. Non-optimal solutions may be non-

minimal, i.e. a subset of the returned solution may also be a solution; consequently, the learned root

might contain unnecessary edges. Nevertheless, in practice, the solutions rarely contain such edges

or eventually disappear by observing an appropriate counterexample. This notion of minimality is

not related to minimal RMs (i.e., RMs with the fewest possible states) since the number of states

of the root in each learning task is fixed.

Restrictions

To further constrain the structure of the learnable HRMs, we introduce some rules similar to those

for learning RMs (see Section 5.1.2). For simplicity, some of these constraints use the auxiliary rule

below to define the ed(X, Y, E, M) atoms, which are equivalent to the call(X, Y, E, M, M2) atoms but

omitting the called RM:

ed(X, Y, E, M) : - call(X, Y, E, M, ).

The following inductive solutions are ruled out:

• Solutions containing an edge calling the leaf M> and labeled by a formula formed only by neg-

ative literals. The rule below enforces a proposition to occur positively whenever a proposition

appears negatively in an edge calling M>:

: - neg(X, Y, E, M, ), not pos(X, Y, E, M, ), call(X, Y, E, M,M>).

• Solutions containing an unlabeled edge calling the leaf M> (i.e., a call to the leaf with context

>) to avoid unconditional transitions. The rule below enforces the constraint:

: - not pos(X, Y, E, M, ), not neg(X, Y, E, M, ), call(X, Y, E, M,M>).
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Table 8.2: List of hyperparameters and their values. The HRM policy learning hyperparameters
annotated with SMDP correspond to SMDP Q-learning updates (i.e., policies over options).

Parameter CraftWorld WaterWorld

General
Episodes

Without HRM learning 100,000 (OP, OPL); 200,000 (FR, FRL) 100,000 (WOD); 200,000 (WD)
With HRM learning 150,000 (OP, OPL); 300,000 (FR, FRL) 150,000 (WOD); 300,000 (WD)

Maximum episode length 1,000 1,000
Num. of instances |I| 10 10

HRM policy learning (Section 7.1)
Learning rate α 5× 10−4 1× 10−5

Learning rate (SMDP) α 5× 10−4 1× 10−3

Optimizer RMSprop (Hinton et al., 2012a) RMSprop (Hinton et al., 2012a)
Discount γ 0.9 0.9
Discount (SMDP) γ 0.99 0.99
Updated formula Q-functions per step 4 4
Replay memory size 500,000 500,000
Replay start size 100,000 100,000
Target network update frequency 1,500 1,500
Replay memory size (SMDP) 10,000 10,000
Replay start size (SMDP) 1,000 1,000
Target network update frequency (SMDP) 500 500
Minibatch size 32 32
Initial exploration 1.0 1.0
Final exploration 0.1 0.1
Annealing steps 2,000,000 5,000,000
Annealing steps (SMDP) 10,000 10,000

HRM learning (Section 7.3)
Curriculum weight β 0.99 0.99
Curriculum threshold 0.85 0.75
Curriculum update frequency (# episodes) 100 100
ILASP time budget 2 hours 2 hours
Num. collected goal traces ρ (height 1) 25 25
Num. collected goal traces ρ (height ≥2) 150 150
Num. goal traces ρs to learn first HRM 10 10
Max. num. edges between states κ 1 1

DRQN
Learning rate α 1× 10−4 –
Optimizer RMSprop (Hinton et al., 2012a) –
Discount γ 0.99 –
Replay memory size 1,000 –
Replay start size 100 –
Network update frequency 16 –
Network update scheme Bootstrapped random updates –
Target network update frequency 1,500 –
Num. sampled episodes 1 –
Sampled sequence length 128 –
Initial exploration 1.0 –
Final exploration 0.1 –
Annealing episodes 300,000 –

CRM
Learning rate α 5× 10−4 1× 10−5

Optimizer RMSprop (Hinton et al., 2012a) RMSprop (Hinton et al., 2012a)
Discount γ 0.99 0.99
Replay memory size 1,000,000 1,000,000
Replay start size 100,000 100,000
Target network update frequency 1,500 1,500
Minibatch size 32 32
Initial exploration 1.0 1.0
Final exploration 0.1 0.1
Annealing steps 100,000,000 2,000,000
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• Solutions containing non-accepting and non-rejecting states without outgoing edges. These

states are only required in scenarios where the accepting or rejecting states must be unreachable

from them. In practice, these scenarios are not considered, so we rule them out through the

following rule:{
has outgoing edges(X, M) : - ed(X, , , M).

: - state(X, M), not has outgoing edges(X, M), X!=uA, X!=uR.

}
.

• Solutions containing cycles; that is, solutions where two states can be reached from each other.

These solutions are discarded to speed up the learning. The following set of rules, which is

analogous to that in Section 5.1.2, enforces the constraint:
path(X, Y, M) : - ed(X, Y, , M).

path(X, Y, M) : - ed(X, Z, , M), path(Z, Y, M).

: - path(X, Y, M), path(Y, X, M).

 .

Furthermore, we compress traces similarly to Definition 5.1.1 with the difference that empty labels

are not removed; hence, the compressed traces here considered only consist of removing contiguous

equal labels from a given trace. For instance, the trace 〈{}, { }, { }, {}, {}, { }, { }〉 is compressed

to 〈{}, { }, {}, { }, { }〉. Even though LHRM does not require traces to be compressed, performance

is enhanced since traces are often shortened, as shown in Chapter 5.

8.1.3 Reporting Results

We report the results using tables and figures that result from averaging 5 independent runs, each

using a different random seed (hence, a different set of random instances). Experiments involving

(H)RM learning had a 2-hour budget exclusively addressed to learning the machines for the entire

run (i.e., not for each individual learning task). All timed experiments were run on 3.40GHz Intel®

Core™ i7-6700 processors, while non-timed experiments were run on 2.90GHz Intel® Core™ i7-10700,

4.20GHz Intel®Core™ i7-7700K, and 3.20GHz Intel® Core™ i7-8700 processors.

The metrics reported for each table vary across experiments; hence, we describe them in the

respective sections for clarity. Results are reported as µ ± σ, where µ is the average and σ is the

standard error for a given metric. We mark with a dash (–) cases where the (H)RM learner has

timed out across all runs. The learning curves show the average undiscounted return obtained by

the greedy policy every 100 episodes across instances and runs. The dotted vertical lines correspond

to episodes where an HRM was learned.

8.2 Learning Non-Flat Hierarchies of Reward Machines

In this section, we evaluate the effectiveness of LHRM for interleaving the exploitation and learning

of HRMs in CraftWorld and WaterWorld. As discussed throughout the thesis, (H)RMs com-

pactly encode history in terms of high-level propositional events. Here, we also experiment with two

alternative ways of handling history described in Section 2.1.2: (i) regular DQNs, which do not han-

dle history (i.e., they are memoryless), and (ii) DRQNs, which extend DQNs by employing LSTMs
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to capture histories. Unlike LSTMs, (H)RMs enable task decomposition and are interpretable. In

what follows, we describe the setup and the obtained results for the experiments.

8.2.1 Experimental Setup

The comparison with memoryless (DQNs) and neural memory (DRQNs) approaches is performed

across different CraftWorld tasks; hence, the following implementation details apply to this

domain only. The curriculum learning method is the same as for LHRM but performed for a single

task; that is, the curriculum only chooses across instances at the start of each episode since there is

a single task. Both DQNs and DRQNs are implemented as DDQNs.

The network architecture of the baseline DQNs resembles that of the formula-associated DQNs

in our approach (see Section 8.1.1). The only difference is that the MLP takes the concatenation of

(i) the CNN’s output and (ii) a vector encoding of the label at that step, where occurring propositions

take a value of 1 and 0 otherwise. We provide (ii) to leverage the same information exploited by

LHRM. The hyperparameters are the same as for the formula-associated DQNs (see Table 8.2)

except for the exploration factor, which is linearly annealed from 1.0 to 0.1 across 300,000 episodes.

The architecture of the DRQNs is similar to the baseline DQNs’ but includes an LSTM instead;

specifically, following the implementation of Hausknecht and Stone (2015), we replace the first fully

connected layer with an LSTM layer of the same size. The rest of the hyperparameters are listed

in Table 8.2, where the replay memory size and the replay start size are given in terms of episodes

(i.e., not steps, unlike the other approaches). Since updates are more costly in DRQNs, they are

applied every 16 steps instead of after each step. The network is updated using a 128-step sequence

from a single episode (if the sampled episode is shorter, the sequence is padded). Even though

different combinations of learning rates (5 × 10−5, 1× 10−4, 5× 10−4), discount factors (0.9, 0.99,

0.999), target network update frequencies (1,500, 5,000), sequence lengths (4, 8, 16, 32) and number

of sampled episodes (1, 2, 4, 8) were tested, performance was always poorer than LHRM’s.

8.2.2 Results

We here show that LHRM effectively interleaves the exploitation and learning of HRMs in Craft-

World and WaterWorld, and consider some ablations that impact both types of learning. We

also compare the performance of LHRM to that obtained by memoryless and neural memory ap-

proaches. The findings for LHRM’s learning component derive from the tables in Appendix B.2.

We refer the reader to the specific tables where appropriate.

Main Results

Figure 8.2 shows the LHRM learning curves for CraftWorld (FRL) and WaterWorld (WD).

These settings are the most challenging due to the inclusion of dead-ends since (i) they hinder the

observation of goal examples in level 1 tasks using random walks, (ii) the RMs must include rejecting

states, (iii) formula options must avoid dead-ends, and (iv) call options must avoid invoking options

leading to rejecting states. In line with the curriculum method, LHRM does not start learning a

level h task until the average return for tasks from levels 1, . . . , h − 1 surpasses a given threshold.

The convergence for high-level tasks is often fast due to the reuse of lower level HRMs and policies.
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Figure 8.2: LHRM learning curves for CraftWorld (FRL) and WaterWorld (WD).

The sudden performance decay for rgb&cmy around episode 2.5× 105 is due to a new RM for

rg&bc being learned—a vertical line for the latter is shown at the time of the decay. Following

our curriculum method, the average return for rg&bc is reset to 0 and the current level is set to

2; hence, the agent stops performing rgb&cmy (level 3), which causes the performance decay (the

return is 0 while a task is not active). When the average return across level 2 tasks is again above

the threshold, the agent continues learning rgb&cmy.

The average time (in seconds) spent on learning all HRMs is 1009.8±122.3 for OP, 1622.6±328.7

for OPL, 1031.6±150.3 for FR, 1476.8±175.3 for FRL, 35.4±2.0 for WOD, and 67.0±6.2 for WD—

see Tables B.1–B.2 for details. Dead-ends (OPL, FRL, WD) incur longer times since (i) there is one

more proposition, (ii) there are edges to the rejecting state(s), and (iii) there are dead-end traces to

cover. We observe that the complexity of learning an HRM does not necessarily correspond with the

instance-type complexity (e.g., the times for OP and FRL are close). Learning in WaterWorld is

faster than in CraftWorld since the RMs have fewer states and there are fewer callable RMs.

Ablations

By restricting the callable RMs to those required by the HRM (e.g., just using Paper and Leather

RMs to learn Book’s), there are fewer ways to label the edges of the induced RM. Learning is 5–7×
faster using 20% fewer calls to the learner (i.e., fewer examples) in CraftWorld, and 1.5× faster in

WaterWorld; thus, HRM learning becomes less scalable as the number of tasks and levels grows.

This is an instance of the utility problem (Minton, 1988). How to refine the callable RM set, prior

to HRM learning, is an avenue for future work. We refer the reader to Tables B.3–B.4 for specifics.

We evaluate the performance of exploration with options using the number of episodes needed

to collect the ρ goal traces for a given task since the activation of its level. Intuitively, the agent

rarely moves far from a region of the state space using primitive actions only, thus taking longer

to collect the traces; in contrast, options enable the agent to explore the state space efficiently. In
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Figure 8.3: Learning curves for DQN, DRQN and LHRM in CraftWorld.

CraftWorld’s FRL setting, using primitive actions requires 128.1× more episodes than options

in MilkBucket, the only level 2 task for which ρ traces are collected. Likewise, primitive actions

take 53.1× and 10.1× more episodes in OPL and WD, respectively. In OP and WOD, options are

not as beneficial since episodes are relatively long (1,000 steps), there are no dead-ends, and it is

easy to observe the different propositions. For specific details, see Tables B.5–B.6.

Learning the first HRMs using a single goal trace (ρ = ρs = 1) incurs frequent timeouts in all

CraftWorld settings, thus showing the value of using many short traces instead.

Comparison with Memoryless and Neural Memory Approaches

Figure 8.3 shows that LHRM outperforms DQN and DRQN across different CraftWorld tasks

in OP and OPL instances. DRQN increasingly struggles with the complexity of the tasks, while the

poor performance of DQN shows the need for capturing histories. The apparent convergence delay

in LHRM is due to the curriculum method; e.g., the policies and HRMs for MilkBucket and Book

become learnable once level 2 in the curriculum activates. Previous works on learning RMs (Toro

Icarte et al., 2019) show similar results using other memoryless and LSTM-based approaches.

8.3 Learning Flat Hierarchies of Reward Machines

Learning a flat HRM is often less scalable than learning a non-flat equivalent since (i) already

learned HRMs cannot be reused, and (ii) a flat HRM usually has more states and edges (as shown
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in Theorem 6.2.2, growth can be exponential). We compare the performance of learning (from

interaction) a non-flat HRM using LHRM with that of an equivalent flat HRM using LHRM (i.e., our

own approach but without calling lower level RMs), DeepSynth (Hasanbeig et al., 2021), JIRP (Xu

et al., 2020) and LRM (Toro Icarte et al., 2019).1 In the following paragraphs, we describe the

evaluated RM learning approaches, and discuss the results. The descriptions of the RM learning

approaches include a brief qualitative comparison to LHRM, with a focus on the learning aspects here

evaluated. For comparisons including the exploitation aspects, we refer the reader to Section 9.1.1.

8.3.1 Experimental Setup

The core difference with respect to learning non-flat HRMs is that there is a single task for which the

HRM is learned. In this setting, our method (LHRM) is therefore not allowed to reuse previously

learned HRMs for other tasks; however, it still uses the same hyperparameters (see Table 8.2). In

the case of DeepSynth, JIRP and LRM, we exclusively evaluate their RM learning components using

traces collected through random walks. For a fair comparison against LHRM (both in the non-flat

and flat learning cases), we (i) compress the traces using the methodology described in Section 8.1.2,

and (ii) use the OP and WOD settings of CraftWorld and WaterWorld respectively, where

observing goal traces by randomly exploring the environment is relatively easy (especially for simple

tasks such as MilkBucket).2 In these approaches, a different instance is selected at each episode

following a cyclic order (i.e., 1, 2, . . . , |I| − 1, |I|, 1, 2, . . . ); besides, if needed, they include a

proposition for when no original proposition is observed.

In what follows, we briefly describe the RM learning component and hyperparameters of Deep-

Synth, JIRP, and LRM.3 In all cases (including ours), learning is performed from positive examples

(i.e., traces observable from interaction) only; besides, they all relearn RMs from counterexamples.

DeepSynth, JIRP, and LRM learn RMs whose edges are labeled by proposition sets. Since proposi-

tion sets are mutually exclusive by default, these methods do not need to enforce mutual exclusivity

between the edges to two different RM states; in contrast, LHRM employs propositional logic for-

mulas and needs to enforce mutual exclusivity. To the best of our knowledge, unlike LHRM, these

methods do not explicitly break symmetries during the search for an RM.

DeepSynth

DeepSynth (Hasanbeig et al., 2021) learns RMs using a program synthesis method that tackles long

traces efficiently by segmenting them (Jeppu et al., 2020). Both DeepSynth and LHRM aim to learn

minimal RMs by performing iterative deepening on the number of states; however, their ability to

learn minimal RMs depends on different hyperparameters. LHRM depends on the maximum number

of edges κ from one state to another, whereas DeepSynth depends on two hyperparameters. First,

DeepSynth specifies the size w of the sliding window for segmenting the traces; crucially, this helps

control the algorithm complexity by only considering unique segments. Second, as discussed later,

algorithms that learn minimal finite-state machines only from positive examples tend to overgen-

1The codebases for DeepSynth (https://github.com/grockious/deepsynth) and LRM (https://bitbucket.org/
RToroIcarte/lrm) are linked in the papers, whereas the one for JIRP (https://github.com/corazza/stochastic-
reward-machines) was referred to us by one of the authors through personal communication.

2Following Table 8.2, each run for these instances consists of 150,000 episodes.
3DeepSynth actually learns FSMs different from RMs; however, our experimental analysis focuses on capturing

the task structure, so we here consider DeepSynth as an RM learning method.

https://github.com/grockious/deepsynth
https://bitbucket.org/RToroIcarte/lrm
https://bitbucket.org/RToroIcarte/lrm
https://github.com/corazza/stochastic-reward-machines
https://github.com/corazza/stochastic-reward-machines
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eralize; hence, to alleviate this problem, a hyperparameter l is introduced to control the degree of

generalization by eliminating sequences of length l present in the RM but not in the traces. In other

words, w controls the length of the positive (i.e., observable, feasible) examples, whereas l controls

the length of the negative (i.e., unfeasible) examples.

Both DeepSynth and LHRM learn an initial RM from a set of traces collected through random

exploration. DeepSynth updates the RM upon observing a trace containing a new label or, more

generally, when no transition from the current RM state is labeled with the currently observed label.

The RMs learned by DeepSynth, like ours, contain a set of accepting states. The accepting traces

change throughout the process by observing new labels, which results in an incremental build of

the RM from previous RMs. This strategy removes the need for observing goal traces from random

exploration and incrementally builds the RM associated with the task from partial traces; neverthe-

less, this strategy assumes that each newly observed label is important to complete the underlying

task, which might not be true. We hypothesize that due to this strategy and the previous hyperpa-

rameters, DeepSynth often learns an RM that accurately predicts the next event/label instead of a

minimal one.

By default, DeepSynth calls the RM learner periodically, even if the example set remains un-

changed; experimentally, this strategy led to avoidable timeouts (i.e., the time budget was spent

unnecessarily), so we modified the code to call the learner only upon observing a counterexample.

The rest of the hyperparameters are left unchanged. The agent collects traces for 50,000 steps before

learning an initial RM, whereas the values of w and l are 3 and 2, respectively.

JIRP

JIRP (Xu et al., 2020) casts the RM learning task as a SAT problem. Like in our case, the tasks

considered by Xu et al. are episodic and fulfill Assumption 3.1.1 (i.e., the reward is 1 for goal histories,

and 0 otherwise). Both JIRP and LHRM learn minimal RMs by performing iterative deepening on

the number of states. JIRP determines that a trace is a counterexample if the sequence of rewards it

yields in the RM differs from that in the environment; hence, under Assumption 3.1.1, JIRP learns

RMs that distinguish between goal and incomplete traces. JIRP periodically learns (if needed) a

new RM from a set of counterexamples; in contrast, LHRM only uses a set of counterexamples to

learn the first RM, and then learns a new RM every time a counterexample is observed.

The experiments were performed using the PySAT solver (Ignatiev et al., 2018). The approach

consists of two hyperparameters. The maximum number of states is set to the size of a minimal RM

for the task at hand. The frequency with which the RM is updated from counterexamples is set to

20 episodes, which is the default value used in the released code.

LRM

LRM (Toro Icarte et al., 2019) formulates the RM learning problem as a discrete optimization

problem, which is solved using a local search algorithm called Tabu search (Glover and Laguna,

1997). Given a candidate RM, Tabu search derives a list of neighbors (in this case, RMs that

differ by one transition), and the neighbor minimizing a specific optimization metric is selected as

the next candidate RM; crucially, Tabu search maintains a (tabu) list of the previously selected

candidate RMs and prevents them from being chosen again. LRM aims to find an RM that is good

at predicting the next different label given a maximum number of states; that is, unlike LHRM, it
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Table 8.3: Results of learning non-flat and flat HRMs using different methods. The fields are (left-
to-right): the method name, the number of completed runs without timing out, the amount of time
needed to learn the HRMs or RMs, and the number of states and edges of the RM.

Method Task C Time (s.) States Edges

L
H

R
M

(N
on

-F
la

t) MilkBucket 5 1.5± 0.2 3.0± 0.0 2.0± 0.0
Book 5 191.2± 36.4 5.0± 0.0 5.8± 0.2
BookQuill 5 17.9± 1.4 4.0± 0.0 4.0± 0.0
Cake 5 74.5± 25.7 4.0± 0.0 3.2± 0.2

rg 5 0.9± 0.0 3.0± 0.0 2.0± 0.0
rg&bc 5 4.5± 0.3 4.0± 0.0 4.0± 0.0
rgb&cmy 5 15.1± 1.7 4.0± 0.0 4.0± 0.0

L
H

R
M

(F
la

t)

MilkBucket 5 3.2± 0.6 4.0± 0.0 3.6± 0.2
Book 0 – – –
BookQuill 0 – – –
Cake 0 – – –

rg 5 0.9± 0.0 3.0± 0.0 2.0± 0.0
rg&bc 0 – – –
rgb&cmy 0 – – –

D
ee

p
S

y
n
th

MilkBucket 5 325.6± 29.7 13.4± 0.4 93.2± 1.7
Book 5 288.9± 31.7 16.6± 3.1 119.0± 19.4
BookQuill 5 308.6± 52.6 12.8± 0.5 92.8± 2.3
Cake 4 290.6± 36.4 17.2± 2.5 110.2± 11.6

rg 0 – – –
rg&bc 0 – – –
rgb&cmy 0 – – –

J
IR

P

MilkBucket 5 17.1± 5.5 4.0± 0.0 3.0± 0.0
Book 0 – – –
BookQuill 0 – – –
Cake 0 – – –

rg 5 32.3± 7.9 3.8± 0.2 82.4± 9.1
rg&bc 0 – – –
rgb&cmy 0 – – –

L
R

M

MilkBucket 5 347.5± 64.5 4.0± 0.0 14.0± 1.0
Book 5 2261.0± 552.2 8.0± 0.0 31.2± 2.0
BookQuill 0 – – –
Cake 0 – – –

rg 0 – – –
rg&bc 0 – – –
rgb&cmy 0 – – –
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does not look for a minimal RM. LRM does not exclusively address goal-oriented tasks; therefore,

the learned RMs do not have explicit accepting and rejecting states, and different trace types (goal,

dead-end, incomplete) are not distinguished. Both LRM and LHRM learn an initial RM from a set

of traces, although in the latter case the set only consists of goal traces. LRM determines that a

trace is a counterexample if it contains a label l′ that is observed for the first time from an RM

state u after having observed a different label l; intuitively, given the aforementioned optimization

objective, when the new RM might need to refine its ability to predict the next event from the

previous one.

The experimental hyperparameters are the following. The maximum number of RM states is set

to that of a minimal RM for the task at hand. The rest of the values are the ones set by default.

Random traces are collected for 1,000 episodes before learning an initial RM. The tabu list consists

of 10,000 entries, and each search consists of 100 steps.

8.3.2 Results

Table 8.3 shows the results for the different learning approaches. A non-flat HRM for MilkBucket

(level 2) is learned in 1.5±0.2 seconds, whereas flat HRMs take longer: 3.2±0.6 w/LHRM, 325.6±29.7

w/DeepSynth, 17.1± 5.5 w/JIRP and 347.5± 64.5 w/LRM. LHRM and JIRP learn minimal RMs,

hence producing the same RM consisting of 4 states and 3 edges. DeepSynth and LRM do not learn

a minimal RM but one that is good at predicting the next possible label given the current one (and

the current RM state in the case of LRM). In domains like ours where propositions can be observed

anytime (i.e., without temporal dependencies between them), these methods tend to overfit the

input traces and output large RMs that barely reflect the task’s structure, e.g. DeepSynth learns

RMs with 13.4± 0.4 states and 93.2± 1.7 edges. In contrast, methods learning minimal RMs from

observable traces only may suffer from overgeneralization (Angluin, 1980) in other domains (e.g., with

temporally-dependent propositions), as acknowledged in our previous work (Furelos-Blanco et al.,

2021) and, recently, by Toro Icarte et al. (2023). The earlier observations for MilkBucket also

apply to more complex tasks (i.e., involving more high-level temporal steps and multiple paths to

the goal), such as Book (level 2), BookQuill (level 3) and Cake (level 4); namely, LHRM learns

non-flat HRMs for these tasks in (at most) a few minutes, while learning an informative flat HRM

is unfeasible.

DeepSynth, JIRP and LRM perform poorly in WaterWorld. Unlike LHRM, these methods

learn RMs whose edges are not labeled by formulas but proposition sets; hence, the RMs may have

exponentially more edges (e.g., 64 instead of 2 for rg), and become unfeasible to learn. Indeed, flat

HRM learners time out in rg&bc and rgb&cmy, while LHRM only needs a few seconds.

8.4 Exploiting Handcrafted Hierarchies of Reward Machines

We compare the performance of policy learning in handcrafted non-flat HRMs against that in flat

equivalents, which are guaranteed to exist by Theorem 6.2.1. For fairness, the flat HRMs are minimal.

To exploit the flat HRMs, we apply our HRL algorithm (Section 7.1) and CRM (Section 2.1.5), which

learns an action-value function over S × U using synthetic counterfactual experiences for each RM

state. Next, we briefly describe how we employ CRM and discuss the evaluation results.
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8.4.1 Experimental Setup

The CRM networks are DDQNs that resemble the formula-associated networks in our approach (see

Section 8.1.1). The difference is that the CNN output is concatenated with a one-hot representation

of the RM state and then fed to the MLP. Table 8.2 lists the rest of the hyperparameters.

8.4.2 Results

Figure 8.4d shows the learning curves for some CraftWorld tasks using FRL instances. The

convergence rate is similar in the simplest task (MilkBucket), but higher for non-flat HRMs in the

hardest ones. Unlike the HRL approaches, CRM does not decompose the subtask into independently

solvable subtasks and, hence, deals with sparser rewards that result in a slower convergence; indeed,

the only non-zero reward comes from the transitions to an accepting state. In the case of the HRL

approaches, since both use the same set of formula option policies, differences arise from flat HRMs’

lack of modularity. Call options, which are not present in flat HRMs, form independent modules

that reduce reward sparsity. MilkBucket involves fewer high-level steps than BookQuill and

Cake; thus, the reward is less sparse and non-flat HRMs are not as beneficial.

The efficacy of non-flat HRMs, as shown in Figures 8.4a–8.4c and 8.5, is also limited when (i) the

task’s goal is reachable regardless of the chosen options (e.g., if there are no rejecting states, like in

OP and FR), and (ii) the reward is less sparse, like in OPL (the grid is small) or WaterWorld

(the balls easily get near the agent, so even a poor agent can achieve the goal if the number of steps

per episode is large). In general, we also observe that CRM’s performance improves in the latter

scenarios except for rgb&cmy, where the average return eventually decreases. Similar phenomena

in simpler tasks were addressed via hyperparameter tuning (e.g., learning rate, discount, buffer size,

network architecture, annealing steps for the exploration factor); nonetheless, CRM’s long-term

performance was consistently unstable on rgb&cmy.

Figure 8.4b shows a case where the convergence in the non-flat case is delayed with respect to

the flat one. Remember that in DQNs, learning does not start until the buffers contain a certain

number of experiences. In our approach, as described in Section 7.1.1, there is a DQN and a replay

buffer for each RM; thus, in the flat case, there is a single DQN and buffer, while there are several in

the non-flat case. Filling the buffers in the non-flat case is slower since there are higher-level options

(i.e., call options) that do not occur as often as others (i.e., formula options), which explains the

slight convergence delay.

8.5 Summary

In this chapter, we evaluated the exploitation and HRM learning methods introduced in the previ-

ous chapter. First, we have shown that LHRM, our method for interleaving exploitation and HRM

learning, manages to learn the HRMs and performant policies for a set of tasks in two different do-

mains; besides, learning HRMs and exploiting them leads to faster convergence than memoryless and

RNN-based approaches. Second, in line with the theory from Chapter 6, learning an HRM is feasible

in cases where a flat equivalent HRM is not. Third, our HRL exploitation method converges faster

by exploiting a non-flat HRM instead of a flat equivalent one. These results empirically demonstrate

the advantages of hierarchically composing RMs on the exploitation and learning fronts.
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Figure 8.4: Learning curves for three CraftWorld tasks using handcrafted HRMs.
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Figure 8.5: Learning curves for three WaterWorld tasks using handcrafted HRMs.
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Chapter 9

Related Work

In this chapter, we survey research relevant to our work. First, we look at approaches that employ

finite-state machines in reinforcement learning (Section 9.1). Then, we discuss relevant work in

hierarchical reinforcement learning (Section 9.2) and curriculum learning (Section 9.3). Finally, we

examine methods focused on breaking symmetries in graphs (Section 9.4).

9.1 Finite-State Machines in Reinforcement Learning

This section discusses different approaches that use finite-state machines in reinforcement learning.

We start focusing on recent works around reward machines (Section 9.1.1); then, we briefly describe

other formalisms based on finite-state machines and relate them to our work (Section 9.1.2).

9.1.1 Reward Machines

Reward machines build on the idea of revealing a task’s reward function to the agent for enabling

task decomposition previously suggested by Karlsson (1994). The high-level propositional events

employed in RMs and similar approaches resemble the salient events from the intrinsic motivation

literature (Singh et al., 2004). In what follows, we review the main research areas that have been

explored since the introduction of RMs by Toro Icarte et al. (2018a).

Formalism

The reward machines considered in this thesis differ from those introduced by Toro Icarte et al.

(2018a, 2022) in three main regards: (i) accepting and rejecting states are included, (ii) transitions

are labeled with propositional logic formulas in disjunctive normal form instead of arbitrary formulas

or proposition sets, and (iii) the reward-transition function is definer over state pairs rather than

state-label pairs. We refer the reader to Sections 3.2 and 6.1 for further details.

The labeling function considered in this thesis is deterministic (i.e., there is no uncertainty on the

labels observed by the agent); likewise, the state-transition and reward-transition functions are also

deterministic. Other works have recently considered scenarios where the labeling function is noisy (Li

et al., 2022; Verginis et al., 2022), and RMs whose state-transition and/or reward-transition functions

are stochastic (Corazza et al., 2022; Dohmen et al., 2022). Zhou and Li (2022a) augment RMs by
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allowing transitions over predicates instead of only employing proposition sets or propositional logic

formulas.

Diverse ways of composing RMs have been considered in the literature. In this thesis, we have

proposed to compose them hierarchically. De Giacomo et al. (2020) compose RMs by merging

their state and reward transition functions. In multi-agent scenarios, the RMs of the different

agents are composed in parallel (Neary et al., 2021; Dann et al., 2022; Ardon et al., 2023). Task

composability in RL has also been modeled through several other methods, including context-free

grammars (Chevalier-Boisvert et al., 2019), logic-based task algebras (Nangue Tasse et al., 2020),

programs (Verma et al., 2018; Sun et al., 2020; Yang et al., 2021; Zhou and Li, 2022b), subtask

sequences (Andreas et al., 2017) and graphs (Sohn et al., 2018), symbolic planning (Illanes et al.,

2020), temporal logics (Toro Icarte et al., 2018b; León et al., 2020; Wang et al., 2020; Vaezipoor

et al., 2021; León et al., 2022), and other specification languages (Jothimurugan et al., 2019).

Exploitation

Toro Icarte et al. (2022) propose a hierarchical RL algorithm for exploiting RMs similar to the one

we describe in Section 4.1.1. Similarities and differences between these methods are as follows:

• Both define an option for each transition. However, unlike our method, theirs includes options

for self-transitions and does not include options for transitions to undesirable terminal RM

states (e.g., rejecting states in our framework).

• Both perform intra-option learning.

• In our method, the option policies are determined by the formulas labeling the RM edges,

whereas Toro Icarte et al. determine them based on each edge’s source and target states.

Learning formula-associated policies enables reusability since there might be several edges

with the same formula.

• The reward functions that Toro Icarte et al. use to learn the option policies depend on the

reward-transition function of the RM, and add a penalty for transitioning to an unintended

RM state. In contrast, our reward functions for learning options do not depend on the RM (i.e.,

the subtasks are completely independent of the RM); however, we assume dead-end histories

to be common across different stages of the task (i.e., the dead-end indicator at each step can

be used to train all policies).

The task structure encoded by RMs has been leveraged to give bonus reward signals. Camacho

et al. (2019) propose a reward shaping method based on running value iteration over the RM states,

whereas we employ the maximum and minimum distances to the accepting state. Similarly, Camacho

et al. (2017) use automata representations of non-Markovian rewards and exploit their structure to

guide the search of an MDP planner using reward shaping (e.g., using the minimum distance to an

accepting state).

On the more theoretical side, Bourel et al. (2023) derive high-probability regret bounds for RMs.

Other exploitation methods have been designed to support the scenarios outlined in the previous

section.
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Derivation and Learning

The literature on reward machines mainly consists of works that either derive them (or similar FSMs)

from formal language specifications (Camacho et al., 2019; Araki et al., 2021) and expert demon-

strations (Camacho et al., 2021), or learn them from experience using discrete optimization (Toro

Icarte et al., 2019; Christoffersen et al., 2020; Toro Icarte et al., 2023), SAT solving (Xu et al., 2020;

Corazza et al., 2022), active learning (Gaon and Brafman, 2020; Memarian et al., 2020; Xu et al.,

2021; Dohmen et al., 2022), state-merging (Xu et al., 2019; Gaon and Brafman, 2020) and program

synthesis (Hasanbeig et al., 2021). This thesis proposes learning (H)RMs using an inductive logic

programming system. Our method, LHRM, constitutes the first approach to learning hierarchies of

reward machines.

Most approaches for learning reward machines, including ours, have addressed the problem of

making the reward signal Markovian in NMRDPs (Xu et al., 2019; Christoffersen et al., 2020; Gaon

and Brafman, 2020; Memarian et al., 2020; Xu et al., 2020, 2021; Corazza et al., 2022; Dohmen et al.,

2022). Other approaches (Toro Icarte et al., 2019; Hasanbeig et al., 2021; Toro Icarte et al., 2023)

aim to learn reward machines that accurately predict the next label from the previous one. The

latter methods are better suited to POMDPs with non-Markovian observation transitions; indeed,

as observed in Section 8.3, they learn RMs that overfit label traces in NMRDPs since different

labels can be observed anytime (i.e., there is no particular temporal-dependence between the labels).

However, NMRDP-based methods tend to suffer from overgeneralization in POMDP scenarios and,

more generally, when there is an apparent temporal dependence between the labels, as exemplified

in Section 5.1.1 and later in Chapter 10. Overgeneralization is caused by the aim to learn minimal

RMs from feasible traces only; that is, not employing unfeasible traces prevents the agent from

detecting temporal dependencies between the environment labels.

In what follows, we qualitatively compare our methods, ISA and LHRM, with a method from each

of the families above: DeepSynth (Hasanbeig et al., 2021), JIRP (Xu et al., 2020), LRM (Toro Icarte

et al., 2019), and those proposed by Gaon and Brafman (2020). DeepSynth, JIRP and LRM are

outlined and evaluated against LHRM in Section 8.3. We start by enumerating some unmentioned

algorithmic commonalities and differences with respect to DeepSynth, JIRP and LRM, and continue

with a description of the approaches presented by Gaon and Brafman (2020):

• DeepSynth, JIRP, and LRM learn an initial RM from a trace set obtained through random

exploration. Similarly, LHRM uses a set of goal traces collected by randomly exploring the

environment, but possibly using policies from lower level tasks. In contrast, ISA uses a single

goal trace.

• DeepSynth, ISA, LHRM, and LRM emphasize the need for learning from short traces. Deep-

Synth segments traces using a sliding window of a fixed size. LHRM uses the shortest traces

from a set of randomly collected traces to learn the first candidate HRM. ISA, LHRM, and

LRM compress traces by removing contiguous equal labels.

• DeepSynth, JIRP, and LRM learn RMs whose edges are labeled with proposition sets, whereas

ISA and LHRM employ propositional logic formulas. Further, LHRM also labels edges with

calls to other RMs.

• ISA, JIRP, and LHRM aim to learn minimal RMs that model non-Markovian reward, whereas



160 CHAPTER 9. RELATED WORK

DeepSynth and LRM aim to predict the next label from the previous label (and RM state in

the case of LRM) accurately.

• ISA, JIRP, and LHRM distinguish between different trace types based on whether a goal

history is observed or not. DeepSynth and LRM do not make such a distinction, which makes

them more amenable to continuing tasks.

• ISA, JIRP, and LRM use the QRM algorithm to exploit the structure of the learned RMs.

ISA and LRM relearn policies from scratch when the RM is updated. JIRP, in contrast,

attempts to reuse the action-value functions from the previous RM based on a notion of

equivalence between RM states: two RM states are equivalent if they yield the same sequence

of rewards for all traces in the counterexample set. Xu et al. (2020) claim that the optimal

action-value functions are the same for equivalent pairs of states. DeepSynth exploits RMs

using an algorithm reminiscent of QRM, with the only apparent difference being the lack of

counterfactual updates. Since DeepSynth builds the RMs incrementally, it keeps the action-

value functions for each RM state during learning. In the case of the HRL algorithms used by

ISA and LHRM, only the metapolicies associated with the learned RM are reset.

Gaon and Brafman (2020) learn RMs whose edges are labeled with actions; essentially, this

means the example traces are produced through a labeling function l : S × A × S → A mapping

state-action-state triplets to actions. Like in our case, tasks are episodic, and the RMs contain

accepting states representing the completion of a task (i.e., obtaining a non-Markovian reward).

The authors interleave Q-learning and R-max (Brafman and Tennenholtz, 2002) in tabular tasks

with two algorithms from the grammatical inference literature (de la Higuera, 2010) that learn

minimal machines:

• L* (Angluin, 1987), an active learning algorithm that learns deterministic finite automata

(DFA) from (typically) two query types: (i) membership queries, which request whether a

given trace belongs to the target language, and (ii) equivalence queries, which request whether a

proposed DFA captures the target language (if it does not, a counterexample is returned). Gaon

and Brafman use the agent itself to answer these queries. A membership query is answered

by attempting to reproduce the sequence of actions in the given trace. An equivalency query

is answered by checking whether any past observed trace is a counterexample to the proposed

DFA.

• Evidence Driven State Merging (EDSM; Lang et al., 1998), a state-merging approach consisting

of two phases: (i) building a prefix tree acceptor (PTA), a DFA built from the prefixes of a

finite set of traces such that positive traces are accepted and negative traces are not, and

(ii) iteratively merging pairs of equivalent states, stopping when no merging is possible. The

learned DFA depends on the quality of the example set and, under specific conditions, the

algorithm converges to the minimal DFA. The complexity is polynomial in the number of

examples. Gaon and Brafman apply EDSM by recording which traces reach the goal and which

do not, akin to our approach. State-merging methods learn minimal machines by shrinking

the state set, whereas ours do the opposite; nevertheless, both approaches may overgeneralize

if only positive examples (i.e., observable traces from interaction) are used.
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In some experiments, the authors gradually limit the length of the traces towards that of the minimal

positive one to control the size of the resulting DFAs. This strategy is in line with that of some of

the previously outlined methods, which also favor learning from short traces.

In our approaches, the minimality of the learned RM is conditioned to the maximum number of

edges κ allowed from one state to another; in contrast, other methods for learning minimal RMs do

not have such a dependence (Gaon and Brafman, 2020; Xu et al., 2020).

9.1.2 Other Formalisms

In what follows, we describe some works employing other types of finite-state machines in RL.

We refer the reader to Section 9.2 for a comparison between (H)RMs and hierarchical abstract

machines (HAMs; Parr and Russell, 1997; Parr, 1998), an alternative framework to options for

hierarchical RL based on finite-state machines.

Meuleau et al. (1999) propose to represent policies with finite memory using a class of finite-state

machines called policy graphs. Actions are selected stochastically given a state of the graph; likewise,

transitions within the graph are also taken stochastically given a source state and an observation.

In contrast, the transitions of the RMs we considered are determined by propositional logic formulas

over high-level events and taken deterministically. The paper presents a method for learning a policy

graph with a specific number of nodes from traces observed by the agent; specifically, the action-

selection and node-transition functions are parameterized and learned through stochastic gradient

descent. The proposed method is restricted to goal-achievement tasks, akin to our case.

Torrey et al. (2007) learn relational macros, finite-state machines whose states and transitions

are characterized by first-order logic formulas. These formulas are expressed using first-order logic

predicates that describe the environment states. The formulas associated with the states indicate

what action to take, while those associated with the transitions indicate when the transition is taken.

The learning of the relational macros is done in two phases. First, the structure learning phase finds

a sequence of actions distinguishing traces that reach the goal from those that do not and composes

them into an FSM. Second, the ruleset learning phase learns the conditions for choosing actions

and taking transitions. The inductive logic programming system Aleph (Srinivasan, 2001) learns

the rules in both phases. The learned FSM is used for transfer learning: the target task follows

the strategy encoded by the FSM for some steps to estimate the action-values of the actions in the

strategy, and then stops using the FSM and acts according to the action-values. In summary, their

approach differs from ours in that:

• Traces are formed by actions instead of sets of high-level propositional events; however, in

both approaches, traces are divided into groups depending on whether the goal is reached.

• Transitions are labeled by first-order logic formulas instead of propositional logic formulas.

• Logic rules describing what action to take in each FSM state are learned; instead, our policies

do not depend on logic rules.

• Relational macros require tasks to share the same action space to be reusable; in contrast, an

RM can be reused in another task if the proposition set is shared.

Koul et al. (2019) transform the policy encoded by an RNN into a Moore machine, where the

latter is defined in terms of quantized state and observation representations of the former. The
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resulting Moore machine is exclusively employed to interpret the policy; that is, its structure is not

exploited since the policies have been previously learned.

The tasks considered in this thesis are formalized as labeled Markov decision processes, where

non-Markovian rewards can be expressed in terms of label traces. Brafman and De Giacomo (2019)

introduce regular decision processes, a similar formalism for modeling non-Markovian dynamics and

rewards using regular expressions. Reward machines and regular decision processes are closely

related since regular expressions can be transformed into finite-state machines; indeed, Abadi and

Brafman (2020) represent regular decision processes using Mealy machines (a generalization of RMs)

and learn them with existing automaton learning methods.

den Hengst et al. (2022) propose option machines, which output a set of options upon observing

a high-level event instead of outputting a reward (or a reward function). Akin to HRL methods for

RMs, a metapolicy chooses an option within the output set, and the policy for the selected option

is subsequently executed. Nangue Tasse et al. (2022) introduce skill machines, which combine the

temporal abstraction of reward machines with the logical composition of task primitives (Nangue

Tasse et al., 2020) to solve unseen tasks without further learning.

9.2 Hierarchical Reinforcement Learning

We here relate our work to relevant literature in hierarchical reinforcement learning (HRL), including

the classical frameworks and methods for discovering the elements they respectively build upon.

Formalisms

The algorithms described in this thesis for exploiting (H)RMs build upon the options framework (Sut-

ton et al., 1999; Precup, 2001), introduced in Section 2.1.3. In the function approximation case, our

exploitation methods resemble the hierarchies of DQNs by Kulkarni et al. (2016). Call option poli-

cies in HRMs are trained from experiences where the invoked options achieve their goals; in a similar

vein, Levy et al. (2019) learn policies from multiple hierarchical levels in parallel by training each

level as if the lower levels were optimal.

In what follows, we briefly describe other HRL formalisms and relate them to our work. Hi-

erarchical abstract machines (HAMs; Parr and Russell, 1997; Parr, 1998) approach HRL through

hierarchies of finite-state machines; hence, they resemble RMs and, especially, HRMs since both

compose finite-state machines hierarchically (i.e., by enabling machines to call each other). Despite

employing finite-state machines, their structures differ. First, unlike HAMs, RMs include reward-

transition functions. Second, HAMs consist of four types of states, each defining a different behavior:

choice states (non-deterministically choose the next machine state), call states (call a specific ma-

chine), action states (perform a specific primitive action), and stop states (stop the machine and

return control to the machine that called it). Agents exploit HAMs by learning what to do at each

choice state. In contrast, RMs do not have explicit choice, call, or action states; instead, choices

depend on the exploitation algorithm and not only the structure. For instance, in regular RMs,

QRM learns a policy for each RM state mapping environment states into actions; in contrast, HRL

chooses a formula labeling an outgoing edge from an RM state and then chooses actions to satisfy

that formula. Like in HAMs, the machine’s structure constrains the agent’s choices in the latter case.

Third, in line with the previous point, (H)RMs decouple traversals from the policies, i.e. the (H)RM
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must be followed independently of the agent’s choices; therefore, agents that exploit (H)RMs must

be able to interrupt their choices (see Section 7.1). Even though HAMs do not support interruption,

Programmable HAMs (Andre and Russell, 2000) extend them with parameterized subroutines, tem-

porary interrupts, aborts, and memory variables; interestingly, call contexts in HRMs can be seen

as parameters that last for one transition.

MAXQ (Dietterich, 2000) decomposes a task into a hierarchy of independently solvable subtasks.

These hierarchies are represented through graphs showing the task dependencies. (H)RMs constrain

subtasks to be performed in a particular order, whereas MAXQ hierarchies do not explicitly enforce

an order (i.e., the task policy determines the subtask to perform). The author proposes an algorithm

that, akin to our exploitation methods, learns the policy for each task only depending on its subtasks’

policies; hence, policies are easily reusable, and recursive optimality is achieved.

Discovery

One of the core problems in the options framework is option discovery ; namely, identifying options

from experience instead of handcrafting them. Akin to option discovery methods, ISA and LHRM

induce a set of options from experience; however, while ISA’s and LHRM’s options are a byproduct

of finding an (H)RM that compactly captures traces, usual option discovery methods explicitly look

for them. The most explored idea is to constitute options via finding bottlenecks (e.g., McGovern

and Barto, 2001; Menache et al., 2002; Stolle and Precup, 2002; Şimşek and Barto, 2004); that is,

by finding bridges between regions of the state space. Likewise, the conditions labeling the edges

of an RM also constitute bottlenecks between stages towards the completion of a task; indeed,

the high-level methodology of some of these methods is reminiscent of that followed by ISA and

LHRM. For instance, McGovern and Barto (2001) use diverse density to find landmark states in

state trajectories, and it is similar to our approaches because (i) it learns from trajectories, (ii) it

classifies trajectories into different categories depending on whether the goal is achieved or not,

and (iii) it interleaves option discovery and policy learning for the discovered options. Discovering

options for exploration is an active research topic (Bellemare et al., 2016; Machado et al., 2017;

Jinnai et al., 2019; Machado et al., 2020; Dabney et al., 2021; Klissarov and Machado, 2023; Lobel

et al., 2023). Although our options are not discovered for exploration, LHRM leverages options from

previously learned HRMs to observe goal traces in new tasks.

The number of option policies in our approaches is bound by the number of propositions (and

tasks in the case of LHRM); similarly, some option discovery methods impose an explicit bound on

the number of discoverable options (McGovern and Barto, 2001; Bacon et al., 2017; Machado et al.,

2017). Furthermore, ISA and LHRM require tasks to be solved at least once before learning an

(H)RM (and, hence, options), just like some option discovery methods (McGovern and Barto, 2001;

Stolle and Precup, 2002); in contrast, other methods (e.g., Menache et al., 2002; Şimşek and Barto,

2004; Şimşek et al., 2005; Machado et al., 2017) discover options without solving the task and, thus,

are also suited to continuing tasks.

Alternative formalisms to automata for expressing formal languages, like grammars, have been

used to discover options. Lange and Faisal (2019) induce a straight-line grammar, a non-branching

and loop-free context-free grammar, which can only generate a single string. The authors use greedy

algorithms to find a straight-line grammar from the shortest sequence of actions that leads to the

goal. The production rules are then flattened, leading to one macro-action (a sequence of actions)
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per production rule. These macro-actions constitute the set of options.

There has been work on learning the structures from other HRL frameworks. Leonetti et al.

(2012) synthesize a HAM from the set of shortest solutions to a non-deterministic planning problem,

and use it to refine the choices at non-deterministic points through RL. Mehta et al. (2008) propose

a method for discovering MAXQ hierarchies from a trace that reaches the task’s goal.

9.3 Curriculum Learning

The curriculum method employed by LHRM is based on that by Pierrot et al. (2019), who learn

hierarchies of neural programs. The authors assume the level of each program is known; likewise, we

assume the level of each task (i.e., the height of the corresponding HRM’s root) is known. Andreas

et al. (2017) employ a similar method that prioritizes tasks consisting of fewer high-level steps.

Matiisen et al. (2020) propose several curriculum methods; in particular, akin to LHRM, the so-

called online method keeps an estimate of each task’s average return, but it is not applied in an HRL

scenario. Wang et al. (2020) introduce a method that initially learns linear temporal logic formulas

for simple tasks, and progressively switches to harder ones leveraging previously learned formulas

using a set of predefined templates.

9.4 Symmetry Breaking

The symmetry breaking mechanism proposed in this thesis has been shown to help decrease the

time needed to find an (H)RM that covers a set of examples. In this section, we briefly survey

recent works on breaking symmetries in graphs (specifically, finite-state machines) or that use ASP

to encode problems.

SAT-based approaches to learning DFA have used symmetry breaking constraints to shrink the

search space. Heule and Verwer (2010) reduce the DFA learning problem to a graph coloring problem,

which is translated into SAT. The graph to be colored is derived from the examples’ Prefix Tree

Acceptor (PTA, see p. 160) by connecting two states if they cannot be merged. The vertices in a

k-clique must be colored differently, and there are k! different ways of coloring them. The authors

propose to break these symmetries by imposing a way of assigning colors after finding a large clique

using an approximation algorithm (given that the problem is NP-complete). In contrast, graph

indexings similar to ours based on search algorithms like breadth-first search (BFS; Ulyantsev et al.,

2015; Zakirzyanov et al., 2019) and depth-first search (DFS; Ulyantsev et al., 2016) have also been

proposed. State-merging approaches to learning DFA have also used BFS to break symmetries

(Lambeau et al., 2008). These BFS-based methods are different from ours in that they do not

need to define a comparison criteria for sets of symbols since they are applied to DFA; indeed, the

edges in a DFA are labeled by a single symbol, whereas the edges in our RMs might be labeled by

formulas with more than one symbol. Unlike previous works, we prove that the indexing given by

our mechanism is unique.

Given the successes of symmetry breaking in SAT solving, the ASP community has also produced

some work on symmetry breaking. Drescher et al. (2011) propose sbass, a system that detects

symmetries in a ground ASP program through a reduction to a graph automorphism problem; then,

constraints are introduced to the initial program to break the detected symmetries.
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Codish et al. (2019) propose a method that breaks symmetries in undirected graphs by imposing

a lexicographical order in the rows of the adjacency matrix.

In our previous work (Furelos-Blanco et al., 2020), we introduced a method for breaking symme-

tries in acyclic reward machines, which consists of (i) assigning an integer index to each RM state

such that u0 has the lowest index and uA and uR have the highest indices, and (ii) enforcing traver-

sals to go through the RM states in increasing index order. However, this method has a fundamental

problem: it cannot break symmetries when no trace traverses all states in the RM (e.g., if there are

two different paths to the accepting state), as shown in the following example.

Example 9.4.1. Figure 3.4 shows two RMs whose states u1, u2 and u3 can be used interchangeably

if no symmetry breaking is used. If indices 0, . . . , 3 are respectively assigned to states u0, . . . , u3 and

the symmetry breaking mechanism described above is applied, the learned RM for VisitABCD will

always be the one shown in Figure 3.4a. In contrast, the RM states u1 and u2 in Figure 3.4b can

still be switched since there is no traversal that goes through both of them.

The method presented in this thesis does not depend on the sequence of states visited by the

traces; thus, it can break both symmetries in the example.
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Chapter 10

Conclusion

In this final chapter, we summarize the key contributions presented in this thesis and discuss potential

avenues for future work.

10.1 Summary of Contributions

Reward machines (RMs) are finite-state machines that represent a task’s reward function. By

revealing them, an agent can effectively learn policies over histories and perform task decomposition.

As a result, agents can tackle tasks with history-dependent rewards and become more sample-

efficient. However, their applicability and advantages are limited by the complexity of handcrafting

them, the use of algorithms for exploiting them at a single timescale, and their lack of composability.

The objective of this thesis was to expand the applicability and enhance the benefits of reward

machines by learning them from traces, exploiting them at multiple timescales, and hierarchically

composing them. Our contributions towards addressing this objective were broken down into two

parts. In what follows, we summarize the core contributions of each of these parts.

In Part I, we devised techniques for learning and exploiting reward machines. We formalized

two methods for exploiting RMs using the options framework: a novel method for exploiting RMs

at multiple timescales, and an existing one for exploiting RMs at a single timescale. In the latter

case, we introduced reward shaping mechanisms based on the distance to the accepting state. We

proposed a method for learning RMs from traces of high-level events using a state-of-the-art induc-

tive logic programming system. We enhanced the performance of the learning system through a

symmetry breaking mechanism that enforces a unique way of indexing the states and edges of RMs,

which shrinks the search space by ruling out equivalent solutions. We designed an algorithm that

interleaves the exploitation and learning of the RMs. The algorithm learns RMs that are minimal

given a maximum number of edges from one state to another. We proved that an RM covering all

counterexamples is eventually learned. We experimentally showed that exploiting learned RMs and

handcrafted RMs leads to similar performance.

In Part II, we introduced hierarchies of reward machines (HRMs), a formalism for hierarchically

composing reward machines by enabling them to call each other. We proved that (i) any HRM

can be mapped to an equivalent flat HRM (i.e., an HRM that behaves exactly like standard RMs),

and (ii) under certain conditions, an equivalent flat HRM can have exponentially more states and

167



168 CHAPTER 10. CONCLUSION

edges. We devised an algorithm for exploiting HRMs at arbitrarily many timescales, enabling the

reusability of subtasks across different tasks. We presented a curriculum-based method for learning

HRMs from traces given a set of composable tasks. Like in Part I, the learning of the HRMs is

interleaved with their exploitation. We evaluated the different components of our approach across

diverse domains, showing that (i) exploiting a handcrafted HRM enables faster convergence than

exploiting an equivalent flat HRM, (ii) exploiting HRMs is more efficient than using other forms of

memory (e.g., LSTMs), and (iii) in accordance with the theory, learning an HRM is feasible in cases

where a flat equivalent HRM is not.

10.2 Future Work

In this section, we present several directions for future work in the field of reward machines.

Expressiveness

Reward machines, as stated by Toro Icarte et al. (2018a), capture regular languages. The expres-

siveness of these languages (and, hence, RMs) is limited; for instance, they cannot express tasks

involving counting, such as “collect n coffees, then collect n spoons”. Future research can be di-

rected towards designing RMs resembling the automata that capture more complex languages (e.g.,

context-free and context-sensitive languages) and devising methods for exploiting and learning them.

The ILASP system has been previously used to learn context-sensitive grammars (Law et al., 2019).

An alternative path to making RMs more expressive and abstract is using first-order logic. First-

order logic enables expressing conditions more compactly. For instance, a task such as “visit one

of A, B, C and D” in OfficeWorld requires a 2-state RM with four edges from the initial to

the accepting state; in contrast, by defining an atom room(X) where X ∈ {A,B,C,D}, a single

edge labeled with room(X) is needed. The learning of the RMs can be performed much faster by

leveraging the compactness enabled by first-order logic; nevertheless, it requires injecting further

human knowledge. Our methods are extensible to the first-order case since ILASP can learn first-

order rules, and the exploitation algorithms are independent of how edge conditions are expressed

(e.g., the policy associated with the formula room(X) is satisfied upon observing A, B, C or D). Zhou

and Li (2022a) recently made a step in this direction by allowing RM transitions over predicates.

The role of rejecting states in our hierarchies can also be reconsidered. In this thesis, we assumed

that the rejecting states of the constituent RMs in an HRM are global; that is, reaching any rejecting

state makes succeeding at completing the task unfeasible. Rejecting states could also be local, only

making a particular RM fail; hence, this would involve defining what caller RMs should do in

these situations, and reworking the exploitation and learning algorithms accordingly. Investigating

whether this assumption—or any other assumptions—limits the expressiveness of HRMs with respect

to standard RMs (e.g., capturing a subset of languages) is an interesting research direction. Further

compelling avenues include exploring the relaxation of other formalism aspects, such as determinism.

Learning Minimal Reward Machines from Positive and Negative Examples

The methods proposed in this thesis to learn RMs, ISA and LHRM, focus on learning minimal RMs

only from observable traces (i.e., positive examples). As discussed in Sections 5.1.1 and 8.3.2, it
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is known that learning minimal machines exclusively from positive examples can lead to overgen-

eralization. In general, our method suffers from this issue when two propositional events are (or

seem, as exemplified in Figure 5.1) temporally dependent; that is, when an event is observable only

after having observed another one. To address this issue, RMs must also be learned from negative

examples (i.e., unfeasible traces); therefore, our methods must be extended to use these examples.

The following example illustrates the problem.

Example 10.2.1. Let us consider that the proposition set P for OfficeWorld includes a propo-

sition g observed upon completing a goal history. In the case of Coffee, g would be observed after

visiting the K and o locations, thus a possible goal trace is 〈{}, {K}, {}, {o, g}〉. The RM below,

which is minimal, could then be learned. The learner will not refine this RM since there are no

positive examples that contradict this RM; namely, there is no trace where g can be observed without

reaching the goal. On the other hand, an incomplete (but unobservable) trace such as 〈{g}〉 would

trigger the learning of a new RM.

u0 uAg

Existing approaches learn minimal RMs from negative examples. Hasanbeig et al. (2021) derive

these examples from sequences appearing in the RM but not in the traces. Gaon and Brafman (2020)

use an active learning algorithm that asks membership queries (i.e., whether a trace is a positive or

negative example), which are answered based on the agent’s experience (i.e., whether the trace has

been observed or not). Future work could consider answering these queries by leveraging RNNs akin

to Weiss et al. (2018); indeed, Michalenko et al. (2019) have shown that there is a close relationship

between the internal representations used by RNNs and finite-state machines.

Scaling Up Learning

Learning minimal finite-state machines from examples is a hard problem (Gold, 1978). The main

factor limiting our methods’ scalability is the number of states. In this thesis, we have devised two

core techniques for improving scalability: (i) a symmetry breaking method, which enforces a unique

indexing of the states and edges, and (ii) the use of hierarchies of RMs, which enables learning RMs

with fewer states by enabling calls to previously learned RMs. In what follows, we outline other

techniques to scale up our methods.

The structures of the RMs (and, hence, the tasks) considered throughout the thesis are often

similar, e.g. states may be arranged in sequences (i.e., perform tasks in a fixed order) or diamond-

shaped structures (i.e., perform tasks in any order). The learning of a reward machine could poten-

tially leverage templates encoding these common arrangements. For instance, a template seq(X, Y)

could define a 3-state RM such that u0 X−→ u1 Y−→ uA; then, the RM M1 in Figure 6.2b could in-

stead be represented by a 2-state RM whose transition is labeled with an instance of the template,

i.e. u0 seq( , )−−−−−→ uA. Methods for learning RMs can potentially benefit from templates since the set of

states becomes smaller. Wang et al. (2020) propose a similar approach for temporal logic formulas.

Even though the number of states is the main limiting factor towards scalability, several other

aspects have a substantial impact on performance, as experimentally shown in Sections 5.2.5 and

8.2. The length of the traces is one of them: the longer the example traces are, the harder it is to
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learn the RM. In this thesis, we address this problem by compressing the traces and learning an

initial HRM from the shortest traces of a randomly collected set, whereas Hasanbeig et al. (2021)

segment traces using a fixed-size sliding window. Designing methods for compressing traces is an

interesting path for future investigation; however, it is imperative to state under which assumptions

such compression schemes operate. Furthermore, strategies for refining a set of traces could be

considered to improve performance; for instance, discarding a complex counterexample (i.e., long

and containing irrelevant propositions to the task at hand) if it seems subsumed by a simpler one.

Learning in Continual Settings

In this thesis, reward machines have been learned in scenarios where (i) the agent-environment

interaction lasts for a finite number of steps, (ii) given a state-action history, the associated reward

and termination information is always the same (i.e., the reward and termination functions are

stationary), and (iii) the propositional high-level events are known. Furthermore, in the case of

LHRM, a list of composable tasks is provided to the agent. In the real world, agents may need to

adapt continuously to changing environments for an indefinite period of time (Dulac-Arnold et al.,

2021). In our framework, the propositions handcrafted by a human expert and the learned RMs can

eventually become obsolete in such settings; therefore, despite the potential loss of interpretability,

it is crucial to progressively remove these assumptions.

Endowing agents with the ability to dynamically define high-level events on their own is a poten-

tial first step. In general, we devise methods based on detecting objects and derive events from their

interaction (e.g., if they get near each other). Kulkarni et al. (2019) recently proposed an approach

for learning temporally consistent object keypoints in RL, which could constitute the starting point

for this research direction. Learning the proposition set from the agent-environment interaction

implies learning the labeling function as well; that is, the agent must also learn a mapping from

states to sets of high-level events. The resulting labeling function is inherently noisy since the event

detection algorithm is likely imperfect. The standard RM formalism assumes both the labeling and

transition functions to be deterministic; hence, both the formalism and the algorithms need to be

adapted to support noisy labeling functions. Li et al. (2022) and Verginis et al. (2022) have recently

proposed approaches for exploiting (and learning, in the latter case) RMs in these contexts; however,

to the best of our knowledge, learning the proposition set and the labeling function for RMs remains

unexplored. Our RM learning method is extensible to the noisy setting since ILASP supports noisy

examples. In parallel, developing agents that autonomously propose their own composable tasks

represented as HRMs is also a stepping stone to more autonomous agents.

We refer the reader to the work by Khetarpal et al. (2022) for a review of different approaches

to RL in continual settings.
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Appendix A

Reward Machines

In this appendix, we present reward machines for the tasks introduced in Part I of the thesis.

A.1 Examples

Figures 3.2, 3.4a and 3.4b show minimal RMs for the OfficeWorld tasks Coffee, VisitABCD

and CoffeeMail, respectively. Figure A.1 illustrates minimal RMs for other tasks considered in

the ablation experiments from Section 5.2.5. Figures A.2 and A.3 contain minimal RMs for the

CraftWorld and WaterWorld tasks described in Sections 5.3.2 and 5.4.2, respectively.
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Figure A.1: Reward machines for the OfficeWorld tasks in the ablation experiments from Sec-
tion 5.2.5. For simplicity, the rejecting state is omitted from (c).
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Figure A.2: Reward machines for some of the CraftWorld tasks in Chapter 5. The propositions
are a (axe), b (bridge), f (factory), g (grass), h (workbench), i (iron), t (toolshed) and w (wood).
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Figure A.3: Reward machines for the WaterWorld tasks in Chapter 5.
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Appendix B

Hierarchies of Reward Machines

In this appendix, we present hierarchies of reward machines and extended results for the tasks and

experiments in Part II of the thesis.

B.1 Examples

Figures B.1 and B.2 show minimal root RMs for the CraftWorld and WaterWorld tasks

considered in Chapter 8, respectively. In both cases, the RMs correspond to the settings without

dead-ends; thus, they do not include rejecting states. In the case of CraftWorld, the mutual

exclusivity can be enforced differently since the observed labels will never consist of two or more

propositions.

B.2 Learning Non-Flat Hierarchies of Reward Machines

We here provide the tables for the experiments described in Section 8.2. The tables contain the

following HRM learning information left-to-right for each task: (i) task name; (ii) number of runs

in which at least one goal trace was observed; (iii) number of runs in which at least one HRM was

learned; (iv) time spent on learning HRMs; (v) number of calls made to ILASP, i.e. the number of

HRMs learned for a given task; (vi) number of states in the root of the final HRM; (vii) number

of edges in the root of the final HRM; (viii) number of episodes between the learning of the first

HRM and the activation of the task’s level; (ix) number of example traces for each trace type; and

(x) length of the example traces for each trace type. Letters G, D and I denote goal, dead-end and

incomplete traces, respectively. The bottom of each table shows the number of completed runs (i.e.,

the number of runs that have not timed out), the total time spent on learning HRMs, and the total

number of calls made to ILASP.

In the case of CraftWorld, Table B.1 shows the results in the default experimental setting,

whereas Table B.3 outlines the results when the set of callable RMs contains only those actually

needed to learn the HRM for a given task, and Table B.5 presents the results of using primitive

actions for exploration instead of options. Tables B.2, B.4 and B.6 show analogous results for

WaterWorld.
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Figure B.1: Root reward machines for each of the CraftWorld tasks in Chapter 8.
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Figure B.2: Root reward machines for each of the WaterWorld tasks in Chapter 8.
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Table B.1: Results of LHRM in CraftWorld for the default case.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

O
P

Batter 5 5 11.1± 1.7 17.8± 1.9 5.0± 0.0 5.2± 0.2 1.8± 0.1 12.2± 0.7 0.0± 0.0 11.6± 1.4 26.5± 2.1 0.0± 0.0 24.2± 3.2
Bucket 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.1 10.0± 0.0 0.0± 0.0 1.6± 0.2 19.4± 1.1 0.0± 0.0 19.3± 5.7
Compass 5 5 135.4± 73.3 18.6± 1.6 5.0± 0.0 5.2± 0.2 1.8± 0.2 11.8± 0.6 0.0± 0.0 12.8± 1.4 28.7± 1.9 0.0± 0.0 20.3± 2.8
Leather 5 5 0.9± 0.0 3.8± 0.2 3.0± 0.0 2.0± 0.0 1.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.7± 1.7 0.0± 0.0 17.9± 4.4
Paper 5 5 0.8± 0.1 3.4± 0.2 3.0± 0.0 2.0± 0.0 1.6± 0.1 10.0± 0.0 0.0± 0.0 1.4± 0.2 19.8± 2.0 0.0± 0.0 40.6± 27.0
Quill 5 5 18.0± 3.5 19.8± 1.2 5.0± 0.0 5.2± 0.2 2.1± 0.1 13.2± 0.4 0.0± 0.0 12.6± 1.1 29.6± 2.5 0.0± 0.0 24.4± 3.2
Sugar 5 5 0.8± 0.1 3.2± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.2 10.0± 0.0 0.0± 0.0 1.2± 0.2 17.7± 1.6 0.0± 0.0 17.5± 3.2
Book 5 5 191.2± 36.4 22.8± 2.6 5.0± 0.0 5.8± 0.2 6.0± 0.2 11.4± 0.7 0.0± 0.0 17.4± 2.2 20.5± 1.8 0.0± 0.0 24.8± 1.5
Map 5 5 549.4± 149.5 33.4± 3.2 5.0± 0.0 5.6± 0.2 6.0± 0.2 12.2± 0.6 0.0± 0.0 27.2± 2.9 29.5± 3.2 0.0± 0.0 28.7± 1.7
MilkBucket 5 5 1.5± 0.2 4.6± 0.4 3.0± 0.0 2.0± 0.0 6.8± 0.5 10.0± 0.0 0.0± 0.0 2.6± 0.4 11.6± 0.7 0.0± 0.0 15.3± 4.3
BookQuill 5 5 17.9± 1.4 19.6± 1.1 4.0± 0.0 4.0± 0.0 3.8± 0.1 10.0± 0.0 0.0± 0.0 16.6± 1.1 27.2± 1.3 0.0± 0.0 20.8± 1.4
SweetMilk 5 5 7.3± 1.2 12.4± 1.2 4.0± 0.0 4.0± 0.0 3.8± 0.1 10.2± 0.2 0.0± 0.0 9.2± 1.2 16.9± 0.8 0.0± 0.0 14.3± 1.7
Cake 5 5 74.5± 25.7 26.4± 3.7 4.0± 0.0 3.2± 0.2 2.1± 0.1 10.2± 0.2 0.0± 0.0 23.2± 3.6 38.4± 0.9 0.0± 0.0 22.7± 1.6

Completed Runs = 5 Total Time (s.) = 1009.8± 122.3 Total Calls = 189.4± 4.1

O
P

L

Batter 5 5 13.7± 2.9 23.0± 3.0 6.0± 0.0 9.2± 0.2 12.0± 1.0 11.4± 0.4 7.0± 1.2 10.6± 1.6 20.4± 1.1 18.7± 1.6 12.1± 1.7
Bucket 5 5 1.8± 0.2 7.2± 0.6 4.0± 0.0 4.0± 0.0 8.0± 0.5 10.2± 0.2 2.2± 0.2 2.8± 0.4 10.2± 0.5 13.4± 1.9 6.8± 1.7
Compass 5 5 13.1± 1.7 22.0± 1.7 6.0± 0.0 9.2± 0.2 10.4± 1.4 11.0± 0.6 6.8± 1.0 10.2± 1.0 17.2± 1.6 20.9± 1.9 14.3± 0.8
Leather 5 5 1.9± 0.2 7.0± 0.5 4.0± 0.0 4.0± 0.0 6.9± 0.5 10.0± 0.0 2.4± 0.2 2.6± 0.4 11.1± 0.9 16.9± 5.6 8.9± 3.3
Paper 5 5 2.0± 0.2 7.6± 0.6 4.0± 0.0 4.0± 0.0 7.7± 1.1 10.0± 0.0 3.0± 0.3 2.6± 0.4 10.1± 0.9 18.9± 3.3 5.6± 0.8
Quill 5 5 11.3± 1.2 22.0± 1.2 6.0± 0.0 9.2± 0.2 12.8± 1.5 10.6± 0.2 6.4± 0.7 11.0± 0.9 15.3± 1.3 13.5± 1.0 12.1± 1.4
Sugar 5 5 1.7± 0.1 6.4± 0.4 4.0± 0.0 4.0± 0.0 6.5± 0.7 10.0± 0.0 2.4± 0.2 2.0± 0.3 9.6± 0.6 15.3± 3.6 16.6± 9.2
Book 5 5 427.8± 201.6 32.6± 4.2 6.0± 0.0 6.6± 0.2 5.6± 0.2 12.0± 0.3 3.6± 0.7 23.0± 3.4 21.6± 1.5 25.9± 3.4 23.7± 1.3
Map 5 5 647.9± 110.7 38.6± 3.6 6.0± 0.0 6.4± 0.2 5.6± 0.2 11.2± 0.4 3.8± 0.9 29.6± 3.5 23.1± 1.0 27.8± 4.6 26.1± 0.4
MilkBucket 5 5 2.1± 0.2 5.4± 0.4 4.0± 0.0 3.0± 0.0 7.6± 0.5 10.0± 0.0 1.4± 0.4 2.0± 0.0 11.1± 0.5 26.3± 6.5 15.2± 5.8
BookQuill 5 5 18.7± 2.3 16.6± 1.3 4.0± 0.0 4.0± 0.0 3.7± 0.2 10.0± 0.0 0.4± 0.2 13.2± 1.4 29.0± 1.1 6.2± 5.5 27.8± 1.4
SweetMilk 5 5 7.7± 0.7 12.2± 0.9 4.0± 0.0 4.0± 0.0 3.8± 0.2 10.0± 0.0 0.2± 0.2 9.0± 0.9 16.0± 0.9 1.6± 1.6 16.3± 1.3
Cake 5 5 472.9± 216.6 36.0± 6.0 5.0± 0.0 4.6± 0.2 2.1± 0.0 10.0± 0.0 1.6± 0.4 31.4± 5.7 39.5± 1.2 41.5± 8.6 26.9± 0.8

Completed Runs = 5 Total Time (s.) = 1622.6± 328.7 Total Calls = 236.6± 9.3

F
R

Batter 5 5 12.3± 1.7 17.6± 1.3 5.0± 0.0 5.4± 0.2 9.2± 1.2 11.6± 0.4 0.0± 0.0 12.0± 1.2 30.3± 2.3 0.0± 0.0 27.8± 2.0
Bucket 5 5 1.2± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 6.7± 0.9 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.6± 2.5 0.0± 0.0 28.5± 4.1
Compass 5 5 14.1± 1.6 20.2± 1.7 5.0± 0.0 5.2± 0.2 9.8± 0.7 11.6± 0.6 0.0± 0.0 14.6± 1.2 26.5± 0.8 0.0± 0.0 26.5± 2.1
Leather 5 5 1.1± 0.1 3.6± 0.2 3.0± 0.0 2.0± 0.0 4.5± 0.7 10.0± 0.0 0.0± 0.0 1.6± 0.2 13.4± 1.3 0.0± 0.0 16.7± 3.6
Paper 5 5 1.2± 0.0 4.0± 0.0 3.0± 0.0 2.0± 0.0 4.9± 0.9 10.0± 0.0 0.0± 0.0 2.0± 0.0 12.4± 1.1 0.0± 0.0 10.9± 2.5
Quill 5 5 8.9± 0.9 16.0± 0.8 5.0± 0.0 5.2± 0.2 9.4± 1.7 10.6± 0.2 0.0± 0.0 11.4± 0.6 25.4± 0.3 0.0± 0.0 25.5± 2.7
Sugar 5 5 1.1± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 5.2± 0.3 10.0± 0.0 0.0± 0.0 1.8± 0.2 15.3± 1.7 0.0± 0.0 21.0± 10.1
Book 5 5 220.2± 83.3 25.2± 3.4 5.0± 0.0 5.6± 0.2 6.1± 0.2 10.2± 0.2 0.0± 0.0 21.0± 3.4 21.9± 1.0 0.0± 0.0 18.4± 0.7
Map 5 5 628.3± 85.4 37.8± 3.7 5.0± 0.0 5.6± 0.2 5.8± 0.1 10.0± 0.0 0.0± 0.0 33.8± 3.7 26.4± 1.0 0.0± 0.0 21.4± 0.7
MilkBucket 5 5 1.9± 0.2 5.0± 0.3 3.0± 0.0 2.0± 0.0 9.8± 0.7 10.0± 0.0 0.0± 0.0 3.0± 0.3 13.2± 0.7 0.0± 0.0 12.8± 3.2
BookQuill 5 5 12.9± 2.2 15.6± 1.7 4.0± 0.0 4.0± 0.0 3.9± 0.1 10.0± 0.0 0.0± 0.0 12.6± 1.7 29.0± 1.5 0.0± 0.0 13.3± 0.8
SweetMilk 5 5 7.2± 0.6 12.0± 0.7 4.0± 0.0 4.0± 0.0 3.9± 0.2 10.0± 0.0 0.0± 0.0 9.0± 0.7 18.9± 0.9 0.0± 0.0 10.1± 1.0
Cake 5 5 121.1± 41.1 34.0± 4.8 4.0± 0.0 3.0± 0.0 2.2± 0.0 10.0± 0.0 0.0± 0.0 31.0± 4.8 42.2± 1.7 0.0± 0.0 16.2± 1.1

Completed Runs = 5 Total Time (s.) = 1031.6± 150.3 Total Calls = 198.6± 11.3

F
R

L

Batter 5 5 11.3± 1.4 23.4± 2.5 6.0± 0.0 9.2± 0.2 468.4± 121.9 10.4± 0.2 7.6± 0.9 11.4± 1.9 11.9± 0.6 10.1± 1.3 9.9± 0.4
Bucket 5 5 2.3± 0.2 7.0± 0.3 4.0± 0.0 4.0± 0.0 129.5± 69.4 10.2± 0.2 2.8± 0.2 2.0± 0.3 7.8± 0.5 9.9± 1.7 6.4± 2.1
Compass 5 5 13.0± 1.9 24.6± 2.2 6.0± 0.0 9.4± 0.2 550.8± 156.4 10.4± 0.2 7.8± 1.0 12.4± 1.2 12.5± 1.6 9.4± 1.0 8.4± 0.5
Leather 5 5 2.5± 0.3 7.8± 0.7 4.0± 0.0 4.0± 0.0 89.0± 18.0 10.0± 0.0 3.2± 0.4 2.6± 0.4 7.3± 0.4 9.3± 1.7 3.7± 0.4
Paper 5 5 2.2± 0.1 7.0± 0.3 4.0± 0.0 4.0± 0.0 82.7± 18.8 10.0± 0.0 3.0± 0.0 2.0± 0.3 6.9± 0.7 10.2± 1.8 4.7± 2.7
Quill 5 5 11.6± 1.1 23.8± 1.5 6.0± 0.0 9.6± 0.2 458.9± 61.0 10.6± 0.2 8.0± 0.9 11.2± 1.2 11.9± 0.6 13.1± 2.7 9.2± 0.8
Sugar 5 5 2.7± 0.2 8.4± 0.7 4.0± 0.0 4.0± 0.0 103.5± 39.5 10.0± 0.0 3.6± 0.4 2.8± 0.5 8.2± 0.7 10.1± 1.9 5.0± 1.1
Book 5 5 301.7± 98.1 36.4± 1.9 6.0± 0.0 6.8± 0.2 5.3± 0.1 10.2± 0.2 5.0± 0.7 27.2± 1.9 21.7± 1.1 18.8± 2.2 16.1± 0.6
Map 5 5 754.1± 158.2 44.6± 2.6 6.0± 0.0 7.0± 0.0 5.5± 0.2 10.2± 0.2 5.2± 0.4 35.2± 2.3 25.6± 0.5 20.4± 2.9 18.7± 0.6
MilkBucket 5 5 2.8± 0.1 6.6± 0.2 4.0± 0.0 3.0± 0.0 6.9± 0.4 10.0± 0.0 2.0± 0.0 2.6± 0.2 12.5± 0.8 13.1± 3.7 7.4± 2.2
BookQuill 5 5 19.8± 2.9 19.6± 1.6 4.0± 0.0 4.0± 0.0 4.3± 0.1 10.0± 0.0 0.8± 0.4 15.8± 1.2 28.4± 1.1 2.7± 1.3 13.5± 0.9
SweetMilk 5 5 8.8± 0.9 12.6± 1.0 4.0± 0.0 4.0± 0.0 4.0± 0.1 10.0± 0.0 1.2± 0.5 8.4± 0.7 19.3± 1.3 3.7± 2.0 10.7± 2.0
Cake 5 5 344.0± 87.7 46.2± 4.9 5.0± 0.0 4.8± 0.2 2.8± 0.1 10.0± 0.0 2.8± 0.7 40.4± 4.5 44.5± 2.3 21.8± 2.2 17.3± 1.0

Completed Runs = 5 Total Time (s.) = 1476.8± 175.3 Total Calls = 268.0± 6.5

Table B.2: Results of LHRM in WaterWorld for the default case.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

W
O

D

rg 5 5 0.9± 0.0 4.0± 0.0 3.0± 0.0 2.0± 0.0 0.9± 0.1 10.0± 0.0 0.0± 0.0 2.0± 0.0 11.2± 1.0 0.0± 0.0 5.8± 1.1
bc 5 5 0.9± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 0.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 10.8± 0.8 0.0± 0.0 11.9± 3.4
my 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 0.7± 0.0 10.0± 0.0 0.0± 0.0 1.6± 0.2 8.7± 0.8 0.0± 0.0 6.6± 1.9
rg&bc 5 5 4.5± 0.3 13.4± 0.4 4.0± 0.0 4.0± 0.0 8.8± 0.3 11.8± 0.6 0.0± 0.0 8.6± 0.7 12.2± 0.9 0.0± 0.0 14.8± 1.2
bc&my 5 5 5.8± 1.0 15.6± 2.1 4.0± 0.0 4.0± 0.0 8.1± 0.2 12.8± 1.3 0.0± 0.0 9.8± 1.5 13.2± 1.7 0.0± 0.0 17.1± 1.6
rg&my 5 5 4.7± 0.5 13.2± 1.0 4.0± 0.0 4.0± 0.0 8.5± 0.2 10.8± 0.2 0.0± 0.0 9.4± 0.9 12.2± 0.7 0.0± 0.0 18.6± 1.2
rgb 5 5 1.2± 0.1 4.8± 0.5 3.0± 0.0 2.0± 0.0 8.6± 0.2 10.0± 0.0 0.0± 0.0 2.8± 0.5 7.8± 0.2 0.0± 0.0 7.0± 1.4
cmy 5 5 1.4± 0.2 5.4± 0.7 3.0± 0.0 2.0± 0.0 8.8± 0.5 10.0± 0.0 0.0± 0.0 3.4± 0.7 8.0± 0.3 0.0± 0.0 10.2± 1.3
rgb&cmy 5 5 15.1± 1.7 21.6± 1.7 4.0± 0.0 4.0± 0.0 2.3± 0.0 11.0± 0.4 0.0± 0.0 17.6± 1.7 17.3± 0.4 0.0± 0.0 22.6± 1.6

Completed Runs = 5 Total Time (s.) = 35.4± 2.0 Total Calls = 85.4± 3.1

W
D

rg 5 5 1.9± 0.2 7.8± 1.1 4.0± 0.0 4.0± 0.0 3.0± 0.3 10.0± 0.0 3.0± 0.3 2.8± 0.9 7.0± 0.7 10.3± 1.6 4.2± 0.8
bc 5 5 1.8± 0.3 7.2± 1.0 4.0± 0.0 4.0± 0.0 2.7± 0.3 10.2± 0.2 2.4± 0.2 2.6± 0.7 8.4± 0.5 6.9± 1.5 6.3± 1.7
my 5 5 1.4± 0.1 5.8± 0.4 4.0± 0.0 4.0± 0.0 2.9± 0.3 10.0± 0.0 2.4± 0.2 1.4± 0.2 6.9± 0.4 5.8± 1.5 4.6± 1.6
rg&bc 5 5 11.7± 2.5 24.0± 3.8 4.8± 0.2 4.8± 0.2 12.0± 0.4 13.0± 0.7 6.2± 1.6 11.8± 1.9 11.7± 0.8 6.9± 1.5 11.8± 0.8
bc&my 5 5 9.5± 1.5 20.8± 2.4 4.8± 0.2 4.8± 0.2 11.5± 0.4 11.2± 0.6 5.2± 0.7 11.4± 1.6 10.6± 0.9 8.8± 1.4 13.2± 0.9
rg&my 5 5 5.4± 0.5 14.0± 1.3 4.2± 0.2 4.2± 0.2 11.8± 0.6 10.6± 0.2 3.2± 0.7 7.2± 1.1 9.8± 0.3 6.2± 1.9 11.6± 0.7
rgb 5 5 2.5± 0.3 8.2± 0.7 4.0± 0.0 3.0± 0.0 11.9± 0.6 10.2± 0.2 3.0± 0.3 3.0± 0.5 7.9± 0.4 14.0± 1.8 10.6± 2.0
cmy 5 5 3.6± 0.4 11.4± 1.2 4.0± 0.0 3.0± 0.0 10.8± 0.3 10.0± 0.0 4.2± 0.7 5.2± 0.6 7.9± 0.2 8.8± 1.6 10.5± 1.1
rgb&cmy 5 5 29.0± 4.1 31.4± 2.8 4.4± 0.2 4.4± 0.2 4.9± 0.3 11.2± 0.4 5.4± 1.6 21.8± 1.3 16.6± 0.8 7.4± 0.9 17.2± 0.6

Completed Runs = 5 Total Time (s.) = 67.0± 6.2 Total Calls = 130.6± 6.0
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Table B.3: Results of LHRM in CraftWorld with a restricted set of callable RMs.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

O
P

Batter 5 5 11.2± 1.6 17.8± 1.9 5.0± 0.0 5.2± 0.2 1.8± 0.1 12.2± 0.7 0.0± 0.0 11.6± 1.4 26.5± 2.1 0.0± 0.0 24.2± 3.2
Bucket 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.1 10.0± 0.0 0.0± 0.0 1.6± 0.2 19.4± 1.1 0.0± 0.0 19.3± 5.7
Compass 5 5 15.5± 4.2 18.6± 1.6 5.0± 0.0 5.2± 0.2 1.8± 0.2 11.8± 0.6 0.0± 0.0 12.8± 1.4 28.7± 1.9 0.0± 0.0 20.3± 2.8
Leather 5 5 0.9± 0.0 3.8± 0.2 3.0± 0.0 2.0± 0.0 1.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.7± 1.7 0.0± 0.0 17.9± 4.4
Paper 5 5 0.9± 0.0 3.4± 0.2 3.0± 0.0 2.0± 0.0 1.6± 0.1 10.0± 0.0 0.0± 0.0 1.4± 0.2 19.8± 2.0 0.0± 0.0 40.6± 27.0
Quill 5 5 18.2± 3.5 19.8± 1.2 5.0± 0.0 5.2± 0.2 2.1± 0.1 13.2± 0.4 0.0± 0.0 12.6± 1.1 29.6± 2.5 0.0± 0.0 24.4± 3.2
Sugar 5 5 0.8± 0.0 3.2± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.2 10.0± 0.0 0.0± 0.0 1.2± 0.2 17.7± 1.6 0.0± 0.0 17.5± 3.2
Book 5 5 45.8± 4.5 19.6± 0.9 5.0± 0.0 5.6± 0.2 6.0± 0.2 11.2± 1.0 0.0± 0.0 14.4± 0.9 21.6± 1.8 0.0± 0.0 21.0± 1.7
Map 5 5 64.1± 10.6 22.0± 2.6 5.0± 0.0 5.2± 0.2 6.1± 0.2 10.8± 0.4 0.0± 0.0 17.2± 2.7 22.5± 1.6 0.0± 0.0 23.0± 1.2
MilkBucket 5 5 1.2± 0.1 4.4± 0.4 3.0± 0.0 2.0± 0.0 6.8± 0.3 10.0± 0.0 0.0± 0.0 2.4± 0.4 12.1± 0.7 0.0± 0.0 15.3± 1.6
BookQuill 5 5 4.5± 0.8 10.2± 1.4 4.0± 0.0 4.0± 0.0 3.9± 0.1 10.0± 0.0 0.0± 0.0 7.2± 1.4 26.1± 0.8 0.0± 0.0 22.4± 0.9
SweetMilk 5 5 3.5± 0.5 9.6± 1.3 4.0± 0.0 4.0± 0.0 3.9± 0.1 10.2± 0.2 0.0± 0.0 6.4± 1.2 17.4± 0.5 0.0± 0.0 12.5± 0.8
Cake 5 5 9.1± 0.9 17.0± 0.9 4.0± 0.0 3.2± 0.2 2.1± 0.1 10.0± 0.0 0.0± 0.0 14.0± 0.9 37.5± 1.9 0.0± 0.0 18.0± 1.9

Completed Runs = 5 Total Time (s.) = 176.6± 13.1 Total Calls = 153.0± 3.6

O
P

L

Batter 5 5 13.9± 3.0 23.0± 3.0 6.0± 0.0 9.2± 0.2 12.0± 1.0 11.4± 0.4 7.0± 1.2 10.6± 1.6 20.4± 1.1 18.7± 1.6 12.1± 1.7
Bucket 5 5 1.8± 0.1 7.2± 0.6 4.0± 0.0 4.0± 0.0 8.0± 0.5 10.2± 0.2 2.2± 0.2 2.8± 0.4 10.2± 0.5 13.4± 1.9 6.8± 1.7
Compass 5 5 13.2± 1.7 22.0± 1.7 6.0± 0.0 9.2± 0.2 10.4± 1.4 11.0± 0.6 6.8± 1.0 10.2± 1.0 17.2± 1.6 20.9± 1.9 14.3± 0.8
Leather 5 5 1.9± 0.1 7.0± 0.5 4.0± 0.0 4.0± 0.0 6.9± 0.5 10.0± 0.0 2.4± 0.2 2.6± 0.4 11.1± 0.9 16.9± 5.6 8.9± 3.3
Paper 5 5 2.0± 0.2 7.6± 0.6 4.0± 0.0 4.0± 0.0 7.7± 1.1 10.0± 0.0 3.0± 0.3 2.6± 0.4 10.1± 0.9 18.9± 3.3 5.6± 0.8
Quill 5 5 11.5± 1.3 22.0± 1.2 6.0± 0.0 9.2± 0.2 12.8± 1.5 10.6± 0.2 6.4± 0.7 11.0± 0.9 15.3± 1.3 13.5± 1.0 12.1± 1.4
Sugar 5 5 1.6± 0.1 6.4± 0.4 4.0± 0.0 4.0± 0.0 6.5± 0.7 10.0± 0.0 2.4± 0.2 2.0± 0.3 9.6± 0.6 15.3± 3.6 16.6± 9.2
Book 5 5 69.0± 20.5 21.8± 2.2 6.0± 0.0 6.2± 0.2 5.5± 0.1 10.4± 0.2 5.2± 0.9 12.2± 1.9 20.4± 1.3 21.2± 2.0 20.8± 1.7
Map 5 5 76.5± 6.0 24.2± 1.3 6.0± 0.0 6.4± 0.2 5.7± 0.3 11.6± 0.8 4.0± 0.3 14.6± 1.0 24.8± 3.0 21.4± 2.1 25.7± 0.8
MilkBucket 5 5 1.7± 0.2 6.0± 0.6 4.0± 0.0 3.0± 0.0 7.5± 0.7 10.2± 0.2 1.4± 0.2 2.4± 0.2 11.7± 0.7 25.4± 6.4 14.2± 3.4
BookQuill 5 5 5.3± 0.9 10.8± 1.4 4.0± 0.0 4.0± 0.0 3.7± 0.1 10.0± 0.0 1.0± 0.5 6.8± 0.9 27.7± 1.0 11.2± 5.4 21.1± 1.7
SweetMilk 5 5 4.0± 0.9 9.8± 1.7 4.0± 0.0 4.0± 0.0 3.8± 0.1 10.0± 0.0 1.6± 0.7 5.2± 1.2 18.4± 0.7 8.3± 2.9 15.6± 1.7
Cake 5 5 16.2± 0.4 20.8± 0.2 5.0± 0.0 4.0± 0.0 2.1± 0.1 10.0± 0.0 3.2± 0.2 14.6± 0.2 38.1± 0.9 22.5± 3.3 25.8± 1.7

Completed Runs = 5 Total Time (s.) = 218.6± 21.1 Total Calls = 188.6± 5.4

F
R

Batter 5 5 12.6± 1.8 17.6± 1.3 5.0± 0.0 5.4± 0.2 9.2± 1.2 11.6± 0.4 0.0± 0.0 12.0± 1.2 30.3± 2.3 0.0± 0.0 27.8± 2.0
Bucket 5 5 1.2± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 6.7± 0.9 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.6± 2.5 0.0± 0.0 28.5± 4.1
Compass 5 5 14.1± 1.5 20.2± 1.7 5.0± 0.0 5.2± 0.2 9.8± 0.7 11.6± 0.6 0.0± 0.0 14.6± 1.2 26.5± 0.8 0.0± 0.0 26.5± 2.1
Leather 5 5 1.1± 0.1 3.6± 0.2 3.0± 0.0 2.0± 0.0 4.5± 0.7 10.0± 0.0 0.0± 0.0 1.6± 0.2 13.4± 1.3 0.0± 0.0 16.7± 3.6
Paper 5 5 1.2± 0.1 4.0± 0.0 3.0± 0.0 2.0± 0.0 4.9± 0.9 10.0± 0.0 0.0± 0.0 2.0± 0.0 12.4± 1.1 0.0± 0.0 10.9± 2.5
Quill 5 5 9.3± 0.8 16.0± 0.8 5.0± 0.0 5.2± 0.2 9.4± 1.7 10.6± 0.2 0.0± 0.0 11.4± 0.6 25.4± 0.3 0.0± 0.0 25.5± 2.7
Sugar 5 5 1.4± 0.2 3.8± 0.2 3.0± 0.0 2.0± 0.0 5.2± 0.3 10.0± 0.0 0.0± 0.0 1.8± 0.2 15.3± 1.7 0.0± 0.0 21.0± 10.1
Book 5 5 43.8± 13.0 20.0± 1.9 5.0± 0.0 5.4± 0.2 6.0± 0.1 10.0± 0.0 0.0± 0.0 16.0± 1.9 21.9± 1.0 0.0± 0.0 14.7± 1.4
Map 5 5 85.2± 13.4 22.2± 2.5 5.0± 0.0 5.2± 0.2 5.9± 0.1 10.2± 0.2 0.0± 0.0 18.0± 2.6 26.5± 0.9 0.0± 0.0 18.2± 1.2
MilkBucket 5 5 1.4± 0.1 4.4± 0.2 3.0± 0.0 2.0± 0.0 10.2± 0.9 10.0± 0.0 0.0± 0.0 2.4± 0.2 13.0± 0.8 0.0± 0.0 12.2± 2.8
BookQuill 5 5 6.3± 0.9 13.2± 1.7 4.0± 0.0 4.0± 0.0 3.8± 0.1 10.0± 0.0 0.0± 0.0 10.2± 1.7 30.6± 2.0 0.0± 0.0 11.9± 1.2
SweetMilk 5 5 4.8± 0.6 11.8± 1.3 4.0± 0.0 4.0± 0.0 3.8± 0.1 10.0± 0.0 0.0± 0.0 8.8± 1.3 19.8± 0.7 0.0± 0.0 8.6± 1.0
Cake 5 5 12.5± 1.8 20.8± 2.5 4.0± 0.0 3.0± 0.0 2.3± 0.1 10.0± 0.0 0.0± 0.0 17.8± 2.5 44.2± 2.6 0.0± 0.0 13.1± 1.2

Completed Runs = 5 Total Time (s.) = 194.9± 17.6 Total Calls = 161.4± 7.0

F
R

L

Batter 5 5 11.2± 1.4 23.4± 2.5 6.0± 0.0 9.2± 0.2 468.4± 121.9 10.4± 0.2 7.6± 0.9 11.4± 1.9 11.9± 0.6 10.1± 1.3 9.9± 0.4
Bucket 5 5 2.4± 0.1 7.0± 0.3 4.0± 0.0 4.0± 0.0 129.5± 69.4 10.2± 0.2 2.8± 0.2 2.0± 0.3 7.8± 0.5 9.9± 1.7 6.4± 2.1
Compass 5 5 13.1± 1.9 24.6± 2.2 6.0± 0.0 9.4± 0.2 550.8± 156.4 10.4± 0.2 7.8± 1.0 12.4± 1.2 12.5± 1.6 9.4± 1.0 8.4± 0.5
Leather 5 5 2.5± 0.4 7.8± 0.7 4.0± 0.0 4.0± 0.0 89.0± 18.0 10.0± 0.0 3.2± 0.4 2.6± 0.4 7.3± 0.4 9.3± 1.7 3.7± 0.4
Paper 5 5 2.1± 0.1 7.0± 0.3 4.0± 0.0 4.0± 0.0 82.7± 18.8 10.0± 0.0 3.0± 0.0 2.0± 0.3 6.9± 0.7 10.2± 1.8 4.7± 2.7
Quill 5 5 11.6± 1.2 23.8± 1.5 6.0± 0.0 9.6± 0.2 458.9± 61.0 10.6± 0.2 8.0± 0.9 11.2± 1.2 11.9± 0.6 13.1± 2.7 9.2± 0.8
Sugar 5 5 2.6± 0.2 8.4± 0.7 4.0± 0.0 4.0± 0.0 103.5± 39.5 10.0± 0.0 3.6± 0.4 2.8± 0.5 8.2± 0.7 10.1± 1.9 5.0± 1.1
Book 5 5 62.2± 13.2 27.4± 2.2 6.0± 0.0 6.6± 0.2 5.3± 0.1 10.2± 0.2 5.6± 0.6 17.6± 1.7 23.0± 1.0 16.5± 2.0 13.4± 1.0
Map 5 5 131.3± 28.0 34.0± 3.0 6.0± 0.0 6.6± 0.2 5.5± 0.2 10.2± 0.2 6.8± 0.7 23.0± 2.4 26.2± 0.7 16.9± 1.6 14.5± 0.5
MilkBucket 5 5 2.7± 0.7 6.6± 0.6 4.0± 0.0 3.0± 0.0 6.8± 0.3 10.0± 0.0 2.2± 0.2 2.4± 0.4 12.0± 0.8 9.4± 1.0 9.9± 2.3
BookQuill 5 5 6.8± 0.6 12.6± 0.7 4.0± 0.0 4.0± 0.0 4.4± 0.2 10.0± 0.0 1.6± 0.5 8.0± 0.3 32.3± 2.3 4.9± 1.5 11.6± 1.1
SweetMilk 5 5 5.4± 0.6 12.2± 1.0 4.0± 0.0 4.0± 0.0 4.0± 0.1 10.2± 0.2 1.0± 0.4 8.0± 0.4 20.4± 1.7 2.9± 1.4 10.3± 1.2
Cake 5 5 16.3± 1.2 21.2± 1.0 5.0± 0.0 4.0± 0.0 2.8± 0.0 10.0± 0.0 2.6± 0.2 15.6± 1.2 47.7± 1.9 15.0± 0.7 16.0± 0.9

Completed Runs = 5 Total Time (s.) = 270.1± 34.6 Total Calls = 216.0± 5.1

Table B.4: Results of LHRM in WaterWorld with a restricted set of callable RMs.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

W
O

D

rg 5 5 0.9± 0.0 4.0± 0.0 3.0± 0.0 2.0± 0.0 0.9± 0.1 10.0± 0.0 0.0± 0.0 2.0± 0.0 11.2± 1.0 0.0± 0.0 5.8± 1.1
bc 5 5 0.9± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 0.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 10.8± 0.8 0.0± 0.0 11.9± 3.4
my 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 0.7± 0.0 10.0± 0.0 0.0± 0.0 1.6± 0.2 8.7± 0.8 0.0± 0.0 6.6± 1.9
rg&bc 5 5 5.3± 0.4 15.2± 0.9 4.0± 0.0 4.0± 0.0 8.6± 0.3 12.4± 0.2 0.0± 0.0 9.8± 0.8 14.7± 1.3 0.0± 0.0 16.0± 0.8
bc&my 5 5 3.9± 0.1 12.4± 0.2 4.0± 0.0 4.0± 0.0 8.3± 0.4 11.8± 0.7 0.0± 0.0 7.6± 0.7 11.2± 0.8 0.0± 0.0 13.2± 1.0
rg&my 5 5 4.6± 0.3 13.8± 0.9 4.0± 0.0 4.0± 0.0 8.5± 0.2 10.2± 0.2 0.0± 0.0 10.6± 0.9 10.7± 0.5 0.0± 0.0 15.8± 1.6
rgb 5 5 1.2± 0.1 4.8± 0.7 3.0± 0.0 2.0± 0.0 8.7± 0.2 10.2± 0.2 0.0± 0.0 2.6± 0.7 8.3± 0.5 0.0± 0.0 16.2± 3.8
cmy 5 5 1.6± 0.2 6.2± 0.7 3.0± 0.0 2.0± 0.0 8.6± 0.5 10.0± 0.0 0.0± 0.0 4.2± 0.7 8.0± 0.3 0.0± 0.0 10.8± 1.2
rgb&cmy 5 5 5.7± 0.8 15.0± 1.6 4.0± 0.0 4.0± 0.0 2.6± 0.1 10.4± 0.4 0.0± 0.0 11.6± 1.6 17.0± 1.1 0.0± 0.0 15.9± 1.3

Completed Runs = 5 Total Time (s.) = 24.9± 0.9 Total Calls = 78.8± 2.7

W
D

rg 5 5 1.9± 0.3 7.8± 1.1 4.0± 0.0 4.0± 0.0 3.0± 0.3 10.0± 0.0 3.0± 0.3 2.8± 0.9 7.0± 0.7 10.3± 1.6 4.2± 0.8
bc 5 5 1.8± 0.3 7.2± 1.0 4.0± 0.0 4.0± 0.0 2.7± 0.3 10.2± 0.2 2.4± 0.2 2.6± 0.7 8.4± 0.5 6.9± 1.5 6.3± 1.7
my 5 5 1.4± 0.1 5.8± 0.4 4.0± 0.0 4.0± 0.0 2.9± 0.3 10.0± 0.0 2.4± 0.2 1.4± 0.2 6.9± 0.4 5.8± 1.5 4.6± 1.6
rg&bc 5 5 6.9± 0.7 17.6± 1.5 4.6± 0.2 4.6± 0.2 12.0± 0.4 10.8± 0.2 4.6± 0.5 9.2± 1.0 10.4± 0.5 9.4± 1.8 12.6± 0.7
bc&my 5 5 9.3± 1.8 21.4± 2.9 4.8± 0.2 4.8± 0.2 11.7± 0.5 12.2± 1.0 5.8± 1.1 10.4± 1.8 11.4± 0.7 6.9± 1.3 12.1± 0.7
rg&my 5 5 7.8± 1.1 18.8± 1.9 4.8± 0.2 4.8± 0.2 11.8± 0.5 11.0± 0.3 4.8± 0.4 10.0± 2.0 9.8± 0.2 8.6± 0.8 13.0± 0.8
rgb 5 5 2.1± 0.1 7.6± 0.2 4.0± 0.0 3.0± 0.0 11.9± 0.5 10.0± 0.0 2.6± 0.2 3.0± 0.0 7.6± 0.5 11.8± 1.7 10.7± 1.7
cmy 5 5 2.3± 0.2 8.2± 0.8 4.0± 0.0 3.0± 0.0 10.7± 0.2 10.0± 0.0 2.2± 0.4 4.0± 0.5 7.8± 0.2 9.9± 1.6 8.9± 0.5
rgb&cmy 5 5 9.6± 1.5 20.6± 2.6 5.0± 0.0 5.0± 0.0 5.0± 0.6 10.2± 0.2 6.4± 0.9 11.0± 1.8 15.0± 0.5 12.3± 0.8 14.2± 1.2

Completed Runs = 5 Total Time (s.) = 42.9± 3.7 Total Calls = 115.0± 7.5
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Table B.5: Results of LHRM in CraftWorld without exploration using options.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

O
P

Batter 5 5 11.2± 1.7 17.8± 1.9 5.0± 0.0 5.2± 0.2 1.8± 0.1 12.2± 0.7 0.0± 0.0 11.6± 1.4 26.5± 2.1 0.0± 0.0 24.2± 3.2
Bucket 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.1 10.0± 0.0 0.0± 0.0 1.6± 0.2 19.4± 1.1 0.0± 0.0 19.3± 5.7
Compass 5 5 15.6± 4.1 18.6± 1.6 5.0± 0.0 5.2± 0.2 1.8± 0.2 11.8± 0.6 0.0± 0.0 12.8± 1.4 28.7± 1.9 0.0± 0.0 20.3± 2.8
Leather 5 5 0.9± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 1.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.7± 1.7 0.0± 0.0 17.9± 4.4
Paper 5 5 0.9± 0.1 3.4± 0.2 3.0± 0.0 2.0± 0.0 1.6± 0.1 10.0± 0.0 0.0± 0.0 1.4± 0.2 19.8± 2.0 0.0± 0.0 40.6± 27.0
Quill 5 5 18.3± 3.6 19.8± 1.2 5.0± 0.0 5.2± 0.2 2.1± 0.1 13.2± 0.4 0.0± 0.0 12.6± 1.1 29.6± 2.5 0.0± 0.0 24.4± 3.2
Sugar 5 5 0.9± 0.0 3.2± 0.2 3.0± 0.0 2.0± 0.0 1.7± 0.2 10.0± 0.0 0.0± 0.0 1.2± 0.2 17.7± 1.6 0.0± 0.0 17.5± 3.2
Book 5 5 529.0± 164.2 21.2± 1.4 5.0± 0.0 5.8± 0.2 6.8± 0.2 10.2± 0.2 0.0± 0.0 17.0± 1.5 33.0± 2.6 0.0± 0.0 23.7± 1.3
Map 5 5 1924.2± 443.5 28.0± 3.8 5.0± 0.0 5.4± 0.2 7.8± 0.4 10.4± 0.2 0.0± 0.0 23.6± 3.7 40.1± 1.0 0.0± 0.0 29.4± 1.3
MilkBucket 5 5 1.6± 0.2 4.4± 0.4 3.0± 0.0 2.0± 0.0 6.1± 0.3 10.0± 0.0 0.0± 0.0 2.4± 0.4 16.0± 1.0 0.0± 0.0 14.2± 1.3
BookQuill 5 5 42.7± 10.1 24.6± 3.9 4.0± 0.0 4.0± 0.0 6.8± 0.2 10.0± 0.0 0.0± 0.0 21.6± 3.9 55.8± 2.7 0.0± 0.0 21.2± 1.1
SweetMilk 5 5 8.1± 0.8 11.8± 1.0 4.0± 0.0 4.0± 0.0 4.9± 0.1 10.2± 0.2 0.0± 0.0 8.6± 1.2 31.1± 0.7 0.0± 0.0 13.1± 0.8
Cake 5 5 198.3± 47.5 43.0± 5.3 4.0± 0.0 3.8± 0.2 5.5± 0.2 10.0± 0.0 0.0± 0.0 40.0± 5.3 65.0± 0.9 0.0± 0.0 22.0± 0.9

Completed Runs = 5 Total Time (s.) = 2752.8± 503.2 Total Calls = 203.2± 11.8

O
P

L

Batter 5 5 14.1± 3.2 23.0± 3.0 6.0± 0.0 9.2± 0.2 12.0± 1.0 11.4± 0.4 7.0± 1.2 10.6± 1.6 20.4± 1.1 18.7± 1.6 12.1± 1.7
Bucket 5 5 1.8± 0.1 7.2± 0.6 4.0± 0.0 4.0± 0.0 8.0± 0.5 10.2± 0.2 2.2± 0.2 2.8± 0.4 10.2± 0.5 13.4± 1.9 6.8± 1.7
Compass 5 5 13.5± 1.8 22.0± 1.7 6.0± 0.0 9.2± 0.2 10.4± 1.4 11.0± 0.6 6.8± 1.0 10.2± 1.0 17.2± 1.6 20.9± 1.9 14.3± 0.8
Leather 5 5 1.8± 0.1 7.0± 0.5 4.0± 0.0 4.0± 0.0 6.9± 0.5 10.0± 0.0 2.4± 0.2 2.6± 0.4 11.1± 0.9 16.9± 5.6 8.9± 3.3
Paper 5 5 2.0± 0.2 7.6± 0.6 4.0± 0.0 4.0± 0.0 7.7± 1.1 10.0± 0.0 3.0± 0.3 2.6± 0.4 10.1± 0.9 18.9± 3.3 5.6± 0.8
Quill 5 5 11.8± 1.3 22.0± 1.2 6.0± 0.0 9.2± 0.2 12.8± 1.5 10.6± 0.2 6.4± 0.7 11.0± 0.9 15.3± 1.3 13.5± 1.0 12.1± 1.4
Sugar 5 5 1.6± 0.1 6.4± 0.4 4.0± 0.0 4.0± 0.0 6.5± 0.7 10.0± 0.0 2.4± 0.2 2.0± 0.3 9.6± 0.6 15.3± 3.6 16.6± 9.2
Book 5 5 224.8± 71.6 27.0± 1.9 6.0± 0.0 6.4± 0.2 139.7± 21.8 11.6± 0.4 3.2± 0.4 18.2± 1.4 22.0± 1.6 24.7± 6.5 23.5± 1.2
Map 5 5 339.9± 33.6 33.0± 2.8 6.0± 0.0 6.4± 0.2 204.8± 27.1 10.6± 0.2 2.8± 0.5 25.6± 2.5 25.4± 0.8 21.8± 3.1 25.2± 1.1
MilkBucket 5 5 3.5± 0.3 8.2± 0.6 4.0± 0.0 3.0± 0.0 47.6± 3.7 10.2± 0.2 2.6± 0.4 3.4± 0.4 10.3± 0.7 16.2± 1.7 14.2± 1.8
BookQuill 5 5 19.0± 2.2 15.4± 1.5 4.0± 0.0 4.0± 0.0 383.4± 83.7 10.0± 0.0 1.0± 0.3 11.4± 1.3 38.2± 1.6 14.1± 4.9 23.8± 1.0
SweetMilk 5 5 11.4± 2.1 14.4± 1.7 4.0± 0.0 4.0± 0.0 87.4± 8.9 10.4± 0.2 1.0± 0.4 10.0± 1.3 19.7± 1.2 8.7± 4.9 17.6± 1.2
Cake 4 1 277.4± 0.0 33.0± 0.0 5.0± 0.0 4.0± 0.0 264.1± 0.0 10.0± 0.0 2.0± 0.0 28.0± 0.0 46.7± 0.0 36.0± 0.0 22.9± 0.0

Completed Runs = 5 Total Time (s.) = 701.0± 111.2 Total Calls = 199.8± 6.9

F
R

Batter 5 5 12.3± 1.6 17.6± 1.3 5.0± 0.0 5.4± 0.2 9.2± 1.2 11.6± 0.4 0.0± 0.0 12.0± 1.2 30.3± 2.3 0.0± 0.0 27.8± 2.0
Bucket 5 5 1.2± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 6.7± 0.9 10.0± 0.0 0.0± 0.0 1.8± 0.2 16.6± 2.5 0.0± 0.0 28.5± 4.1
Compass 5 5 14.2± 1.7 20.2± 1.7 5.0± 0.0 5.2± 0.2 9.8± 0.7 11.6± 0.6 0.0± 0.0 14.6± 1.2 26.5± 0.8 0.0± 0.0 26.5± 2.1
Leather 5 5 1.1± 0.1 3.6± 0.2 3.0± 0.0 2.0± 0.0 4.5± 0.7 10.0± 0.0 0.0± 0.0 1.6± 0.2 13.4± 1.3 0.0± 0.0 16.7± 3.6
Paper 5 5 1.2± 0.0 4.0± 0.0 3.0± 0.0 2.0± 0.0 4.9± 0.9 10.0± 0.0 0.0± 0.0 2.0± 0.0 12.4± 1.1 0.0± 0.0 10.9± 2.5
Quill 5 5 9.0± 0.8 16.0± 0.8 5.0± 0.0 5.2± 0.2 9.4± 1.7 10.6± 0.2 0.0± 0.0 11.4± 0.6 25.4± 0.3 0.0± 0.0 25.5± 2.7
Sugar 5 5 1.1± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 5.2± 0.3 10.0± 0.0 0.0± 0.0 1.8± 0.2 15.3± 1.7 0.0± 0.0 21.0± 10.1
Book 5 5 157.9± 36.0 31.4± 2.8 5.0± 0.0 5.6± 0.2 148.9± 25.5 10.6± 0.2 0.0± 0.0 26.8± 2.6 23.4± 1.5 0.0± 0.0 17.2± 1.2
Map 5 5 612.0± 84.4 48.6± 2.6 5.0± 0.0 5.6± 0.2 507.3± 256.1 10.8± 0.4 0.0± 0.0 43.8± 2.2 33.6± 1.4 0.0± 0.0 17.7± 1.8
MilkBucket 5 5 1.9± 0.1 4.8± 0.2 3.0± 0.0 2.0± 0.0 47.9± 8.1 10.0± 0.0 0.0± 0.0 2.8± 0.2 16.2± 1.3 0.0± 0.0 10.0± 2.0
BookQuill 5 2 30.9± 11.8 24.0± 3.0 4.0± 0.0 4.0± 0.0 1391.8± 815.3 10.0± 0.0 0.0± 0.0 21.0± 3.0 38.5± 2.2 0.0± 0.0 15.2± 3.5
SweetMilk 5 5 13.0± 1.9 17.0± 2.0 4.0± 0.0 4.0± 0.0 135.3± 21.0 10.2± 0.2 0.0± 0.0 13.8± 1.9 26.6± 1.1 0.0± 0.0 11.9± 1.7
Cake 1 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Completed Runs = 5 Total Time (s.) = 837.1± 124.2 Total Calls = 180.4± 7.0

F
R

L

Batter 5 5 11.1± 1.4 23.4± 2.5 6.0± 0.0 9.2± 0.2 468.4± 121.9 10.4± 0.2 7.6± 0.9 11.4± 1.9 11.9± 0.6 10.1± 1.3 9.9± 0.4
Bucket 5 5 2.2± 0.1 7.0± 0.3 4.0± 0.0 4.0± 0.0 129.5± 69.4 10.2± 0.2 2.8± 0.2 2.0± 0.3 7.8± 0.5 9.9± 1.7 6.4± 2.1
Compass 5 5 12.9± 1.9 24.6± 2.2 6.0± 0.0 9.4± 0.2 550.8± 156.4 10.4± 0.2 7.8± 1.0 12.4± 1.2 12.5± 1.6 9.4± 1.0 8.4± 0.5
Leather 5 5 2.8± 0.4 7.8± 0.7 4.0± 0.0 4.0± 0.0 89.0± 18.0 10.0± 0.0 3.2± 0.4 2.6± 0.4 7.3± 0.4 9.3± 1.7 3.7± 0.4
Paper 5 5 2.1± 0.1 7.0± 0.3 4.0± 0.0 4.0± 0.0 82.7± 18.8 10.0± 0.0 3.0± 0.0 2.0± 0.3 6.9± 0.7 10.2± 1.8 4.7± 2.7
Quill 5 5 11.6± 1.1 23.8± 1.5 6.0± 0.0 9.6± 0.2 458.9± 61.0 10.6± 0.2 8.0± 0.9 11.2± 1.2 11.9± 0.6 13.1± 2.7 9.2± 0.8
Sugar 5 5 2.6± 0.3 8.4± 0.7 4.0± 0.0 4.0± 0.0 103.5± 39.5 10.0± 0.0 3.6± 0.4 2.8± 0.5 8.2± 0.7 10.1± 1.9 5.0± 1.1
Book 5 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Map 3 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
MilkBucket 5 2 4.7± 0.5 11.0± 1.0 4.0± 0.0 3.0± 0.0 885.6± 142.3 10.0± 0.0 2.0± 0.0 7.0± 1.0 8.2± 0.4 10.2± 1.7 8.8± 0.2
BookQuill 0 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
SweetMilk 0 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Cake 0 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Completed Runs = 5 Total Time (s.) = 47.1± 0.9 Total Calls = 106.4± 2.9

Table B.6: Results of LHRM in WaterWorld without exploration using options.

Task G L Time (s.) Calls States Edges Ep. First # Examples Example Length

(×102) G D I G D I

W
O

D

rg 5 5 0.9± 0.0 4.0± 0.0 3.0± 0.0 2.0± 0.0 0.9± 0.1 10.0± 0.0 0.0± 0.0 2.0± 0.0 11.2± 1.0 0.0± 0.0 5.8± 1.1
bc 5 5 0.9± 0.1 3.8± 0.2 3.0± 0.0 2.0± 0.0 0.8± 0.1 10.0± 0.0 0.0± 0.0 1.8± 0.2 10.8± 0.8 0.0± 0.0 11.9± 3.4
my 5 5 0.9± 0.0 3.6± 0.2 3.0± 0.0 2.0± 0.0 0.7± 0.0 10.0± 0.0 0.0± 0.0 1.6± 0.2 8.7± 0.8 0.0± 0.0 6.6± 1.9
rg&bc 5 5 4.2± 0.4 12.2± 0.9 4.0± 0.0 4.0± 0.0 9.5± 0.3 10.6± 0.2 0.0± 0.0 8.6± 1.1 13.8± 0.2 0.0± 0.0 15.3± 1.6
bc&my 5 5 4.3± 0.3 11.8± 0.7 4.0± 0.0 4.0± 0.0 9.8± 0.1 11.6± 0.2 0.0± 0.0 7.2± 0.6 15.3± 0.9 0.0± 0.0 16.7± 1.7
rg&my 5 5 4.6± 0.3 12.6± 0.7 4.0± 0.0 4.0± 0.0 9.5± 0.1 11.2± 0.4 0.0± 0.0 8.4± 0.7 14.2± 0.9 0.0± 0.0 14.8± 0.8
rgb 5 5 1.2± 0.2 4.6± 0.7 3.0± 0.0 2.0± 0.0 9.0± 0.1 10.0± 0.0 0.0± 0.0 2.6± 0.7 9.4± 0.4 0.0± 0.0 8.7± 1.7
cmy 5 5 1.4± 0.1 5.0± 0.5 3.0± 0.0 2.0± 0.0 8.8± 0.2 10.0± 0.0 0.0± 0.0 3.0± 0.5 8.8± 0.2 0.0± 0.0 10.6± 1.5
rgb&cmy 5 5 16.1± 1.1 19.8± 1.1 4.0± 0.0 4.0± 0.0 4.1± 0.1 11.2± 0.6 0.0± 0.0 15.6± 1.3 26.0± 1.2 0.0± 0.0 21.6± 0.9

Completed Runs = 5 Total Time (s.) = 34.4± 1.4 Total Calls = 77.4± 2.0

W
D

rg 5 5 1.9± 0.3 7.8± 1.1 4.0± 0.0 4.0± 0.0 3.0± 0.3 10.0± 0.0 3.0± 0.3 2.8± 0.9 7.0± 0.7 10.3± 1.6 4.2± 0.8
bc 5 5 1.8± 0.2 7.2± 1.0 4.0± 0.0 4.0± 0.0 2.7± 0.3 10.2± 0.2 2.4± 0.2 2.6± 0.7 8.4± 0.5 6.9± 1.5 6.3± 1.7
my 5 5 1.4± 0.1 5.8± 0.4 4.0± 0.0 4.0± 0.0 2.9± 0.3 10.0± 0.0 2.4± 0.2 1.4± 0.2 6.9± 0.4 5.8± 1.5 4.6± 1.6
rg&bc 5 5 8.1± 1.4 18.2± 2.2 4.6± 0.2 4.6± 0.2 97.4± 4.2 10.8± 0.4 5.2± 0.6 9.2± 1.4 10.5± 0.5 10.3± 1.7 13.7± 1.5
bc&my 5 5 6.2± 0.5 15.6± 0.7 4.6± 0.2 4.6± 0.2 91.5± 5.8 10.6± 0.2 4.6± 0.6 7.4± 0.7 9.7± 0.2 7.0± 1.2 11.3± 1.0
rg&my 5 5 8.6± 1.8 19.2± 2.7 4.4± 0.2 4.4± 0.2 90.3± 5.3 11.2± 0.8 5.6± 0.9 9.4± 1.3 10.4± 0.7 7.7± 0.7 13.3± 0.9
rgb 5 5 2.3± 0.1 7.6± 0.2 4.0± 0.0 3.0± 0.0 65.3± 1.6 10.2± 0.2 2.6± 0.4 2.8± 0.4 7.6± 0.3 11.1± 3.0 8.8± 1.7
cmy 5 5 4.4± 0.6 13.2± 1.5 3.8± 0.2 3.0± 0.0 59.2± 2.9 10.2± 0.2 3.8± 0.6 7.2± 1.0 6.9± 0.5 8.2± 1.0 7.6± 0.8
rgb&cmy 5 5 32.1± 5.0 31.4± 3.3 4.4± 0.2 4.4± 0.2 125.7± 9.9 11.4± 0.5 5.8± 1.2 21.2± 2.2 17.1± 0.6 8.4± 1.6 17.8± 1.0

Completed Runs = 5 Total Time (s.) = 66.7± 6.6 Total Calls = 126.0± 6.3
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