Solving Multiagent Planning Problems with Concurrent Conditional Effects

Daniel Furelos-Blanco¹ and Anders Jonsson²

²Universitat Pompeu Fabra ¹Imperial College London

	n	
Vhat is	concurrent	multiagent

W planning?

• Agents collaborate to solve a problem.

• Collaboration = joint actions executed by multiple agents at once.

(:action lift-side :agent ?a - agent :parameters (?s - side) :precondition (and (at-side ?a ?s) (down ?s) (handempty ?a) (forall (?a2 - agent ?s2 - side) (not(lower-side ?a2 ?s2)))

:effect (and (not (down ?s)) (up ?s) (lifting ?a ?s) (not (handempty ?a ?s))

• • •

• • • (forall (?b - block ?r - room ?s2 - side)(when (and (inroom Table ?r) (on-table ?b) (down ?s2) (forall (?a2 - agent) (not (lift-side ?a2 ?s2)))) (and (on-floor ?b) (inroom ?b ?r) (not (on-table ?b))))))

Scalability

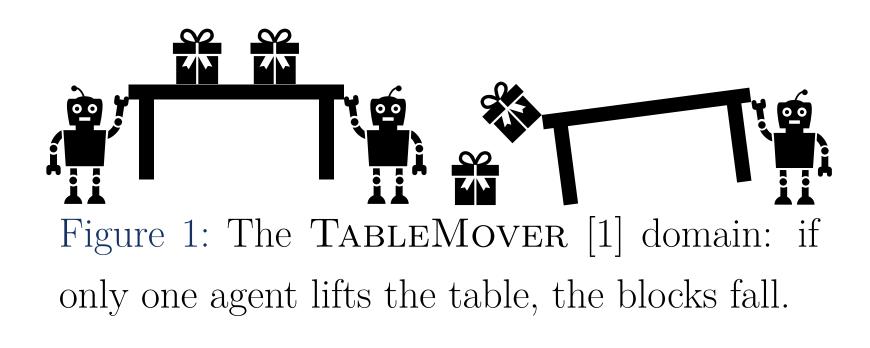

#Agents	# Grou	unded actions	Time (s.)				
	Naive	∞	Naive	∞			
2	48	100	0.1	0.2			
4	992	260	0.5	0.2			
6	31248	484	53.9	0.4			
8	_	772	_	0.5			
10	_	1124	_	0.8			

Figure 2: TABLEMOVER's lift-side action using Kovacs notation (concurrency constraints).

What is the challenge?

• The number of joint actions is worst-case exponential in the number of agents.

• Few planners handle concurrency.

Proposed Approach

Solve multiagent planning problems involving concurrency by translating them into **classical planning**.

Compilation

Divide simulation of a joint action in three different phases:

• Action selection: check preconditions of constituent atomic actions.

• Action application: apply effects of constituent atomic actions.

• **Resetting:** reset auxiliary fluents.

The resulting number of actions is **polynomial**, not exponential:

 $|A'| = 3\sum_{i \in N} |A^i| + 4.$

select- a^i

Extension

Joint actions with bounded size C:

- At most C agents can act at a time.
- Purpose: reduce branching factor.
- The number of actions is still polynomial:

 $|A'| = (2C+1) \sum_{i \in N} |A^i| + 4.$

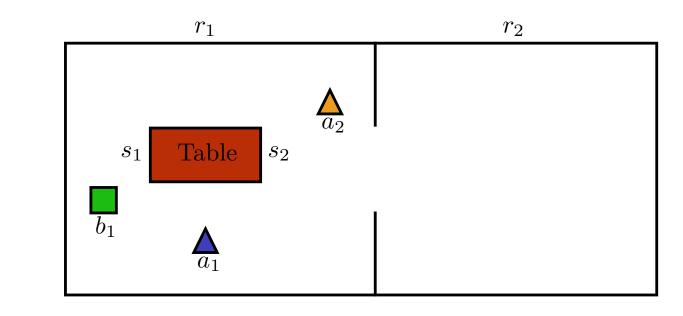
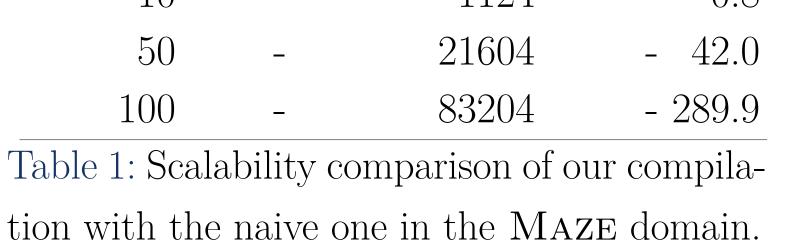



Figure 3: TABLEMOVER instance example.

Joint action

Conclusions

- Sound and complete method for compiling MAPs into classical planning problems.
- The number of resulting actions is polynomial in the MAP description.
- Handles concurrency constraints including conditional effects.
- Solves problems out of reach of previous approaches.

References

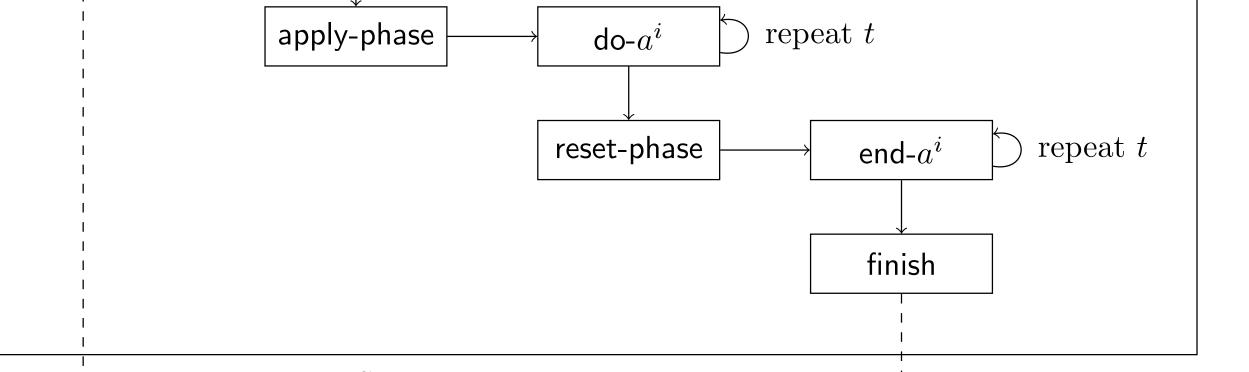
Planning Formalisms

A classical planning problem is defined as

 $\Pi = \langle F, A, I, G \rangle$

where:

• F is a set of fluents,


• A is a set of atomic actions,

• $I \subseteq F$ is an initial state, and $G \subseteq F$ is a goal condition.

A multiagent planning (MAP) problem is defined as

 $\Pi = \langle N, F, \{A^i\}_{i \in \mathbb{N}}, I, G \rangle$

where $N = \{1, \ldots, N\}$ is the agent set, and A^i is the action set of agent $i \in N$.

 \bigcirc repeat $t, 1 \leq t \leq n$

Start new joint action

Figure 4: Compilation of each multiagent action into a classical action.

Multiagent plan

- 1 (to-table a1 r1 s2)(pickup-floor a2 b1 r1)
- 2 (putdown-table a2 b1 r1)

select-phase

- 3 (to-table a2 r1 s1)
- 4 (lift-side a1 s2)(lift-side a2 s1)
- 5 (move-table a1 r1 r2 s2)(move-table a2 r1 r2 s1) 6 (lower-side a1 s2)

Classical plan (1st joint action)

- 1 (select-phase)
- 2 (select-to-table a1 r1 s2)
- 3 (select-pickup-floor a2 b1 r1)
- 4 (apply-phase)
- 5 (do-pickup-floor a2 b1 r1)
- 6 (do-to-table a1 r1 s2)
- (reset-phase)
- 8 (end-to-table a1 r1 s2)
- 9 (end-pickup-floor a2 b1 r1) 10 (finish)

[1] Craig Boutilier and Ronen I. Brafman. Partial-Order Planning with Concurrent Interacting Actions. J. Artif. Intell. Res. (JAIR), 14, 2001.

[2] Daniel L Kovacs.

A Multi-Agent Extension of PDDL3.1. In Proc. Workshop on the International Planning Competition, 2012.

[3] Matthew Crosby, Anders Jonsson, and Michael Rovatsos.

A Single-Agent Approach to Multiagent Planning.

In Proc. ECAI 2014.

[4] Shashank Shekhar and Ronen I. Brafman. Representing and Planning with Interacting Actions and Privacy. In Proc. ICAPS 2018.

Acknowledgements

This work has been supported by the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502). Anders Jonsson is partially supported by the grants TIN2015-67959 and PCIN-2017-082 of the Spanish Ministry of Science.

Figure 5: How a multiagent plan is represented using our approach for problem in Figure 3.

Concurrency Constraints

Results

Contact Information

• Software: https://github.com/aigupf/universal-pddl-parser-multiagent • Email: d.furelos-blanco18@imperial.ac.uk

Universitat Pompeu Fabra Barcelona

• Formulations in [1, 2] use actions as fluents.

- **Positive concurrency:** action a^1 has a^2 as precondition (must be done) together).
- Negative concurrency: action a^1 has $\neg a^2$ as precondition (cannot be done) together).

• Effects of an action a^1 can be **conditioned** to the simultaneous execution of another action a^2 . • Each agent contributes **at most** once to the joint action.

Domain	N		Coverage			Time (s.)					Makespan				# Grounded actions $(\times 10^3)$				
		2	4	∞	CJR	SB	2	4	∞	CJR SB	2	4	∞	CJR SB	2	4	∞	CJR	SB
MAZE	20	13	8	6	11	9	361.5	444.2	145.6	195.1 216.1	47.2	22.0	11.7	77.3 67.7	41.7	69.3	27.9	156.8	108.2
a = 10	10	8	6	5	7	6	250.2	575.6	170.4	228.4 323.1	48.3	25.0	12.2	79.6 69.8	39.9	67.4	26.1	119.3	102.1
a = 15	10	5	2	1	4	3	539.5	-	_		45.4	-	-		43.9	71.8	30.0	194.3	115.1
BoxPushing	20	9	15	16	_	18	5.2	36.4	143.3	- 305.8	11.2	11.3	12.9	- 20.5	3.5	5.7	2.5	_	2.0
a=2	10	9	9	9	_	10	5.2	7.6	6.0	- 158.9	11.2	11.9	11.3	- 18.4	1.8	3.2	1.1	-	1.2
a = 4	10	0	6	7	_	8	-	79.7	319.9	- 489.5	-	10.5	15	- 23.1	5.2	8.2	3.8	-	2.9
TABLEMOVER	. 24	15	12	15	-	_	263.4	336.7	341.1		58.7	59.0	61.5		7.4	13.1	4.6	_	-
a=2	12	10	10	11	-	_	103.9	226.6	214.7		63.5	62.0	64.5		3.4	6.1	2.0	-	-
a = 4	12	5	2	4	-	_	582.4	-	-		49.0	-	-		11.5	20.1	7.2	-	-
WORKSHOP	20	15	13	13	_	_	134.3	301.4	52.5		35.7	37.0	32.5		18.0	31.0	11.5	_	-
a = 4	10	8	8	8	-	_	42.8	263.3	37.1		37.3	43.9	37.3		7.7	13.6	4.8	_	-
a = 8	10	7	5	5	_	-	238.8	362.3	77.1		33.9	26.0	24.8		28.2	48.3	18.1	-	_

• Unbounded compilation (∞) has the highest coverage.

• Compilation C = 2 is fast but cannot solve problems involving > 2 agents.

• Our approach can solve a wider range of problems than CJR [3] and SB [4].