
Solving Multiagent Planning Problems with Concurrent Conditional Effects
Daniel Furelos-Blanco1 and Anders Jonsson2

1Imperial College London 2Universitat Pompeu Fabra

Motivation

What is concurrent multiagent
planning?
•Agents collaborate to solve a
problem.
•Collaboration = joint actions
executed by multiple agents at once.

What is the challenge?
•The number of joint actions is
worst-case exponential in the
number of agents.
•Few planners handle concurrency.

Figure 1: The TableMover [1] domain: if
only one agent lifts the table, the blocks fall.

Proposed Approach

Solve multiagent planning problems
involving concurrency by translating
them into classical planning.

Planning Formalisms

A classical planning problem is de-
fined as

Π = 〈F, A, I, G〉
where:
•F is a set of fluents,
•A is a set of atomic actions,
• I ⊆ F is an initial state, and G ⊆ F
is a goal condition.

A multiagent planning (MAP)
problem is defined as

Π = 〈N, F, {Ai}i∈N , I, G〉
where N = {1, . . . , N} is the agent set,
and Ai is the action set of agent i ∈ N .

Concurrency Constraints

•Formulations in [1, 2] use actions as
fluents.
•Positive concurrency: action a1 has

a2 as precondition (must be done
together).
•Negative concurrency: action a1 has
¬a2 as precondition (cannot be done
together).

•Effects of an action a1 can be
conditioned to the simultaneous
execution of another action a2.
•Each agent contributes at most
once to the joint action.

(:action lift-side
:agent ?a - agent
:parameters (?s - side)
:precondition (and (at-side ?a ?s)

(down ?s) (handempty ?a)
(forall (?a2 - agent ?s2 - side)

(not(lower-side ?a2 ?s2)))
)
:effect (and (not (down ?s))

(up ?s) (lifting ?a ?s)
(not (handempty ?a ?s))

...

...
(forall

(?b - block ?r - room ?s2 - side)
(when

(and (inroom Table ?r)
(on-table ?b) (down ?s2)
(forall (?a2 - agent)

(not (lift-side ?a2 ?s2))))
(and (on-floor ?b) (inroom ?b ?r)

(not (on-table ?b))))))
)

Figure 2: TableMover’s lift-side action using Kovacs notation (concurrency constraints).

Compilation

Divide simulation of a joint action in
three different phases:
•Action selection: check
preconditions of constituent atomic
actions.
•Action application: apply effects
of constituent atomic actions.
•Resetting: reset auxiliary fluents.
The resulting number of actions is
polynomial, not exponential:

|A′| = 3
∑

i∈N

∣∣∣∣∣∣∣A
i
∣∣∣∣∣∣∣ + 4.

Extension

Joint actions with bounded size C:
•At most C agents can act at a time.
•Purpose: reduce branching factor.
•The number of actions is still
polynomial:
|A′| = (2C + 1)

∑
i∈N

∣∣∣∣∣∣∣A
i
∣∣∣∣∣∣∣ + 4.

a1

a2

b1

r1 r2

s1 s2Table

Figure 3: TableMover instance example.

select-phase select-ai

apply-phase do-ai

reset-phase end-ai

finish

repeat t, 1 ≤ t ≤ n

repeat t

repeat t

Joint action

Start new joint action

Figure 4: Compilation of each multiagent action into a classical action.

Multiagent plan
1 (to-table a1 r1 s2)(pickup-floor a2 b1 r1)
2 (putdown-table a2 b1 r1)
3 (to-table a2 r1 s1)
4 (lift-side a1 s2)(lift-side a2 s1)
5 (move-table a1 r1 r2 s2)(move-table a2 r1 r2 s1)
6 (lower-side a1 s2)

Classical plan (1st joint action)
1 (select-phase)
2 (select-to-table a1 r1 s2)
3 (select-pickup-floor a2 b1 r1)
4 (apply-phase)
5 (do-pickup-floor a2 b1 r1)
6 (do-to-table a1 r1 s2)
7 (reset-phase)
8 (end-to-table a1 r1 s2)
9 (end-pickup-floor a2 b1 r1)

10 (finish)

Figure 5: How a multiagent plan is represented using our approach for problem in Figure 3.

Results

Domain N Coverage Time (s.) Makespan # Grounded actions (×103)
2 4 ∞ CJR SB 2 4 ∞ CJR SB 2 4 ∞ CJR SB 2 4 ∞ CJR SB

Maze 20 13 8 6 11 9 361.5 444.2 145.6 195.1 216.1 47.2 22.0 11.7 77.3 67.7 41.7 69.3 27.9 156.8 108.2
a = 10 10 8 6 5 7 6 250.2 575.6 170.4 228.4 323.1 48.3 25.0 12.2 79.6 69.8 39.9 67.4 26.1 119.3 102.1
a = 15 10 5 2 1 4 3 539.5 - - - - 45.4 - - - - 43.9 71.8 30.0 194.3 115.1
BoxPushing 20 9 15 16 - 18 5.2 36.4 143.3 - 305.8 11.2 11.3 12.9 - 20.5 3.5 5.7 2.5 - 2.0
a = 2 10 9 9 9 - 10 5.2 7.6 6.0 - 158.9 11.2 11.9 11.3 - 18.4 1.8 3.2 1.1 - 1.2
a = 4 10 0 6 7 - 8 - 79.7 319.9 - 489.5 - 10.5 15 - 23.1 5.2 8.2 3.8 - 2.9
TableMover 24 15 12 15 - - 263.4 336.7 341.1 - - 58.7 59.0 61.5 - - 7.4 13.1 4.6 - -
a = 2 12 10 10 11 - - 103.9 226.6 214.7 - - 63.5 62.0 64.5 - - 3.4 6.1 2.0 - -
a = 4 12 5 2 4 - - 582.4 - - - - 49.0 - - - - 11.5 20.1 7.2 - -
Workshop 20 15 13 13 - - 134.3 301.4 52.5 - - 35.7 37.0 32.5 - - 18.0 31.0 11.5 - -
a = 4 10 8 8 8 - - 42.8 263.3 37.1 - - 37.3 43.9 37.3 - - 7.7 13.6 4.8 - -
a = 8 10 7 5 5 - - 238.8 362.3 77.1 - - 33.9 26.0 24.8 - - 28.2 48.3 18.1 - -

•Unbounded compilation (∞) has the highest coverage.
•Compilation C = 2 is fast but cannot solve problems involving > 2 agents.
•Our approach can solve a wider range of problems than CJR [3] and SB [4].

Scalability

#Agents # Grounded actions Time (s.)
Naive ∞ Naive ∞

2 48 100 0.1 0.2
4 992 260 0.5 0.2
6 31248 484 53.9 0.4
8 - 772 - 0.5

10 - 1124 - 0.8
50 - 21604 - 42.0

100 - 83204 - 289.9
Table 1: Scalability comparison of our compila-
tion with the naive one in the Maze domain.

Conclusions

•Sound and complete method for
compiling MAPs into classical
planning problems.
•The number of resulting actions is
polynomial in the MAP description.
•Handles concurrency constraints
including conditional effects.
•Solves problems out of reach of
previous approaches.

References

[1] Craig Boutilier and Ronen I. Brafman.
Partial-Order Planning with Concurrent
Interacting Actions.
J. Artif. Intell. Res. (JAIR), 14, 2001.

[2] Daniel L Kovacs.
A Multi-Agent Extension of PDDL3.1.
In Proc. Workshop on the International
Planning Competition, 2012.

[3] Matthew Crosby, Anders Jonsson, and
Michael Rovatsos.
A Single-Agent Approach to Multiagent
Planning.
In Proc. ECAI 2014.

[4] Shashank Shekhar and Ronen I. Brafman.
Representing and Planning with
Interacting Actions and Privacy.
In Proc. ICAPS 2018.

Acknowledgements

This work has been supported by the Maria
de Maeztu Units of Excellence Programme
(MDM-2015-0502). Anders Jonsson is partially
supported by the grants TIN2015-67959 and
PCIN-2017-082 of the Spanish Ministry of Sci-
ence.

Contact Information
• Software: https://github.com/aig-
upf/universal-pddl-parser-multiagent
•Email:
d.furelos-blanco18@imperial.ac.uk

https://github.com/aig-upf/universal-pddl-parser-multiagent
https://github.com/aig-upf/universal-pddl-parser-multiagent
mailto:d.furelos-blanco18@imperial.ac.uk

