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Motivation

• Learn at multiple time scales simultaneously.

• Learn with a rich structure of events and durations.

—— How? ——

Using a type of finite-state machines called Reward Machines.

What is a Reward Machine (RM)?

A finite-state machine representation of a reward function using high-level
propositional events P .

Example: Observe then and then in any order, then .
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Policy Learning in RMs

Using the options framework for hierarchical reinforcement learning. There
are two decision levels:

1. From an RM state, choose a subgoal to (eventually) reach uA. Example:
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2. Given a subgoal, choose an action to (eventually) satisfy it. Example:
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Limitations of RMs

• Lack of modularity.

• Hard to learn when they contain more than a few states.

How to Address These?

Compose RMs into hierarchies.

Contributions

Hierarchies of Reward Machines (HRMs)

• Endow RMs with the ability to call each other.
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• Theory:

1. Given an HRM, there exists an equivalent flat HRM.

2. Given an HRM, an equivalent flat HRM can have exponentially more states and edges.

Hierarchically Compose + Exploit + Learn reward functions in the form
of finite-state machines

Policy Learning in HRMs

There are arbitrarily many decision levels, but still the same two decision types:

1. Iteratively choose subgoals top-down to reach the local
uA until a formula is selected.
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2. Choose an action to satisfy the selected
formula.
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Learning HRMs from Traces

• Task-instance pairs are selected following a curriculum learning method.

• Each task is assigned to a level. Learning proceeds from lower to higher levels.

• HRMs are learned using the ILASP inductive logic programming system.
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Results

Learning Non-Flat HRMs
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Ablations:

• A restricted set of callable RMs speeds up HRM learning by 5-7×.

• Using options to explore helps collect examples up to 128× faster.

Learning Flat HRMs

• We compare our method for learning a non-flat HRM against:

1. Our method for learning a flat HRM.

2. Existing RM learning methods (DeepSynth, JIRP, LRM) that label
edges with proposition sets instead of formulas.

• Learning a non-flat HRM is more scable than learning a flat HRM:

=⇒ Previously learned RMs are reused.

=⇒ The root may consist of fewer states and edges.

=⇒ Easier to learn!

• Abstraction through formulas is key in WaterWorld.

Policy Learning can be Faster in Non-Flat HRMs
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Future Work

• Relax some assumptions (handcrafted propositions, fixed set of tasks).

• Learning in non-episodic settings.
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