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Introduction

Humans describe tasks in some language to instruct other humans:
® ‘bring coffee to the office, but be careful with the plants!’,
® '‘make a cake’,
® ‘patrol locations A, B, C and D in that order’,

We want to do the same with Al agents. Example: MineRL BASALT competition.

MakeWaterfall CreateVillageAnimalPen BuildVillageHouse

NeurlPS 2021 — MineRL BASALT Competition: https://www.aicrowd.com/challenges/neurips-2021-minerl-basalt-competition
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Introduction

® The interaction hides the reward structure from the agent. ..
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® Why not providing these structured task descriptions (e.g., LTL formulas, finite-state
machines, grammars) to the agent?
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Introduction

® Advantages & drawbacks:

+ Interpretability.
+ Enable task decomposition.
—/+ Handcrafted — but we can learn them!

® Qur focus: Express-Exploit-Learn descriptions of tasks that depend on other tasks.

‘collect wheat’,
‘make batter’ = ¢ ‘collect eggs’,

‘mix them’
‘collect iron’
‘make bucket’ = <, .
. . transform it
make milk’ =
‘make a cake' = ‘go to a cow’,
‘make sweetened milk’ = “fill the bucket with milk’
. , ‘collect a sugarcane’,
make sugar’ = ¢, o
transform it
‘mix them’

‘mix them’
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Toro Icarte et al. “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning”. ICML, 2018
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Motivation

Reward Machines — Exploitation

® RMs enable task decomposition: each formula is an independently solvable subtask.
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Furelos-Blanco et al. “Induction and Exploitation of Subgoal Automata for Reinforcement Learning”. JAIR, 2021.
Toro lcarte et al. “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning”. ICML, 2018
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Motivation

Reward Machines — Learning |

RL Loop RM Learning

Furelos-Blanco et al. “Induction of Subgoal Automata for Reinforcement Learning”. AAAI, 2020.

Furelos-Blanco et al. “Induction and Exploitation of Subgoal Automata for Reinforcement Learning”. JAIR, 2021.

Toro Icarte et al. “Learning Reward Machines for Partially Observable Reinforcement Learning”. NeurlPS, 2019.

Gaon and Brafman. “Reinforcement Learning with Non-Markovian Rewards”. AAAI, 2020.

Xu et al. “Joint Inference of Reward Machines and Policies for Reinforcement Learning”. ICAPS, 2020

Hasanbeig et al. "DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning”. AAAI, 2021
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Motivation

Reward Machines — Learning |

RL Loop

Trace: {},{}, {&},{*}. {}.{}

Agent

RM

® The agent attempts to achieve the task's goal.

® The agent maintains a trace of the events observed so far.
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® The agent attempts to achieve the task's goal.

® The agent maintains a trace of the events observed so far.
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Reward Machines — Learning |
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® The agent attempts to achieve the task's goal.
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® The agent maintains a trace of the events observed so far.
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Motivation

Reward Machines — Learning |

RM Learning

forward
T Agent
{m},

RM

® A new RM is learned if the trace is a counterexample (e.g., reaches the task’s goal but
not the accepting state).
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Motivation

Reward Machines — Learning Il

® Learning of minimal RMs (i.e., with the fewest possible states) scales poorly with the
number of states.
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Motivation

Reward Machines — Research Questions

Question #1
How can we make RMs reusable (i.e., independently solvable subtasks)?

Question #2
Can we build large RMs by composing small but easier to learn RMs?

Furelos-Blanco et al. “Hierarchies of Reward Machines”. ICML, 2023.
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Motivation

Reward Machines — Research Questions

Question #1
How can we make RMs reusable (i.e., independently solvable subtasks)?

Question #2

Can we build large RMs by composing small but easier to learn RMs?

Construct hierarchies of reward machines!

Furelos-Blanco et al. “Hierarchies of Reward Machines”. ICML, 2023.
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Hierarchies of Reward Machines

Formalism |

Properties
® Given an HRM, there exists an equivalent RM.
® Given an HRM, an equivalent RM may have exponentially more states and edges.
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Hierarchies of Reward Machines

Exploitation

® The structure of an HRM can be exploited hierarchically.
(1) — Choose formulas or calls to (eventually) reach an accepting state.
@® Formula policies — Choose actions to (eventually) satisfy a formula.

® Subgoals are selected top-down the hierarchical structure until a formula is chosen.
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Hierarchies of Reward Machines

Learning |

Curriculum

® An HRM is learned for each task.

® FEach task has a level h. | Caxe | s
| BookQuiLL | MILKBUCKETSUGAR | h=3

° Lfearning proceeds from lower to | Boon | o | YT— =
hlgher Ievels. | BATTER | BUCKET | COMPASS | LEATIIERl PAPER | QuiLL | SUGAR | h=1

® |evel is increased when the average
performance surpasses a threshold.
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Agent

HRM

® The agent at the beginning of each episode and attempts to complete it.

® The agent maintains a trace of the events observed so far.
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® The agent at the beginning of each episode and attempts to complete it.

® The agent maintains a trace of the events observed so far.

Furelos-Blanco, Law, Jonsson, Broda & Russo
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Hierarchies of Reward Machines

Learning |

HRM Learning

forward
T T Agent
{m},

(@) o

HRM

® A new HRM is learned if the trace is a counterexample (e.g., reaches the task’s goal but
not the 's accepting state).

® HRMs are learned using ILASP, an inductive logic programming system.

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines 13 /22



Hierarchies of Reward Machines

Learning |

HRM Learning

Trace: {}:{}7{’?“}7{"}«,{}~{}-{‘F}
forward
\‘/ Agent
{m}, goal? /‘\
{®} ur
\
HRM

® HRMs for lower-level tasks may be called.

® | ower-level task policies can be used for : observing goal traces becomes easier!

Furelos-Blanco, Law, Jonsson, Broda & Russo
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Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".
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Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".

G : ({8}, {™})
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Example: Sequence of RMs learned for the task “Collect ® then go to ®".

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines



Hierarchies of Reward Machines

Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines



Hierarchies of Reward Machines

Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines



Hierarchies of Reward Machines

Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".
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Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".

UNSATISFIABLE,
Increment the number
of states!
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Example: Sequence of RMs learned for the task “Collect ® then go to ®".
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Learning Il

Example: Sequence of RMs learned for the task “Collect ® then go to ®".

Hm@m
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Evaluation

Domains

CRAFTWORLD

Environment Based on Minigrid [Chevalier-Boisvert et al., 2023].

Image-like grid observations, discrete actions.

Tasks Visit a sequence of landmark locations.

WATERWORLD [Toro Icarte et al., 2018]

Environment Continuous observations (positions, velocities),
discrete actions.

Tasks Observe a sequence of colors.

Toro lcarte et al. “Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning”. ICML, 2018
Chevalier-Boisvert et al. “Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks”. arXiv, 2023

Furelos-Blanco, Law, Jonsson, Broda & Russo
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Evaluation

Learning of HRMs

HRM learning is feasible in two different domains.
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Insights:
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Evaluation

Learning of HRMs

HRM learning is feasible in two different domains.
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Insights:

® HRM learning becomes less scalable as the number of tasks and levels grows.
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Evaluation

Learning of HRMs

HRM learning is feasible in two different domains.
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Insights:
® HRM learning becomes less scalable as the number of tasks and levels grows.

® Exploration with low-level policies enables observing goal trace examples faster.
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Evaluation

HRM Learning vs RM Learning

RM Learning Baselines:
® Minimal RMs: Ours (but learning a flat HRM) and JIRP [Xu et al., 2020].

® RMs that predict the next event accurately: DeepSynth [Hasanbeig et al., 2021] and
LRM [Toro Icarte et al., 2019].

Observations:
@ Minimal RM learning methods poorly scale as the number of states increases.
® DeepSynth and LRM tend to overfit to the observed traces.

© DeepSynth, JIRP and LRM need exponentially more edges in WATERWORLD since they
do not use formulas.

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines 17 / 22



Evaluation

Policy Learning

Baselines:
® Hierarchical method on an RM (i.e., flat HRM).
® CRM [Toro Icarte et al., 2022] — Learns a global policy over an RM (i.e., not hierarchical).

Observations:
® Hierarchical policy learning can be faster in HRMs than in RMs.
® Convergence is faster w.r.t. , which does not independently solve the subtasks.
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Task Complexity

Toro Icarte et al. Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning. JAIR, 2022
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Remove Handcrafted Event Set
® The agent learns its own mapping from observations to propositional events.

® Need for supporting noisy events (i.e., the mapping might make mistakes).
® |oss of interpretability.

Remove Known Task Set
® The agent makes its own set of tasks over the event set.

® Autocurricula: start from simpler tasks and build upon them to perform high-level
behaviors.

Continual Learning

® Build RM learning methods that adapt to changing environments or agent capabilities
(e.g., traces that achieved the goal but later do not).
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Key Insights

® Reveal the task structure to the agent.
® | earn reusable policies and task structures.

® | earning the structures alleviates human intervention, but does not remove it.

Furelos-Blanco, Law, Jonsson, Broda & Russo Hierarchies of Reward Machines



Conclusions

® HRMs, a formalism for hierarchically composing RMs.
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Conclusions

® HRMs, a formalism for hierarchically composing RMs.
® A method that exploits the structure of an HRM.
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Conclusions

® HRMs, a formalism for hierarchically composing RMs.
® A method that exploits the structure of an HRM.

©® A method for learning a collection of HRMs from traces.
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Questions?
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