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Motivation

•Advances to achieve generalization and transfer
between RL tasks are mainly due to abstractions.

•Abstract hierarchies have been represented using
automata in reinforcement learning (RL) and
automated planning.

Problem

Current RL methods use handcrafted automata.

Proposed Approach

ISA (Induction of Subgoal Automata)

A method for learning and exploiting a minimal
automaton from observation traces perceived by
an RL agent.

•Learn an automaton whose transitions are labeled
by propositional formulas representing subgoals.

•The automata learning is formulated as an in-
ductive logic programming task.

•The automata can be exploited by RL algorithms.

Tasks

The tasks are episodic MDPs M =
〈S,A, p, r, γ, ST , SG〉 where:

•S is a finite set of states,

•A is a finite set of actions,

• p : S × A → ∆(S) is a transition probability
function,

• γ ∈ [0, 1) is a discount factor,

•ST ⊆ S is the set of terminal states,

•SG ⊆ ST is the set of goal states, and

• r : S × A × S → R is a reward function such
that

r (s, a, s′) =

{
1 if s′ ∈ SG
0 otherwise

.

•The automaton transitions are defined by a log-
ical formula over a set of observables O.

•A labeling function L : S → 2O maps a state
into a subset of observables perceived by the
agent.

Example The OfficeWorld domain
(Toro Icarte et al., 2018), where O =
{K,B, o, A,B,C,D, ∗}.
•Coffee: deliver coffee to the office.

•CoffeeMail: deliver coffee and mail to the of-
fice.

•VisitABCD: visit locations A, B, C and D in
order.

The tasks terminate when the goal is achieved or a
∗ is broken (this is a dead-end state).

Subgoal Automata

A subgoal automaton is a tuple A =
〈U,O, δ, u0, uA, uR〉 where

•U is a finite set of states,

•O is a set of observables (or alphabet),

• δ : U × 2O → U is a deterministic transition
function,

• u0 ∈ U is a start state,

• uA ∈ U is the unique accepting state, and

• uR ∈ U is the unique rejecting state.

Learning Subgoal Automata from Traces

Input

•A set of states U ⊇ {u0, uA, uR}.
•A set of observables O.

•A set of traces TL,O = 〈T +
L,O, T −L,O, T IL,O〉.

Output

The automaton’s transition function such that the automaton:

• accepts all positive traces T +
L,O,

• rejects all negative traces T −L,O,

• neither accepts nor rejects incomplete traces T IL,O.

The automaton learning task is described as an Inductive Learning from Answer Sets (ILASP) task:

•The learned rules are of two types:

Facts ed(X, Y, EDGE ID) + Rules δ̄(X, Y, EDGE ID, T)

•The actual transitions are defined in terms of the negative ones:

δ(X, Y, EDGE ID, T) : - not δ̄(X, Y, EDGE ID, T).

•Each trace is expressed as a set of obs(O, T) facts.

〈{K}, {}, {o}〉 → {obs(K, 0). obs(o, 2).}

Example

ed(u0, u1, 1). ed(u0, uA, 1).
δ̄(u0, u1, 1, T) : - not obs(K, T), step(T).
δ̄(u0, u1, 1, T) : - obs(o, T), step(T).
δ̄(u0, uA, 1, T) : - not obs(o, T), step(T).
δ̄(u0, uA, 1, T) : - not obs(K, T), step(T).
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Interleaved Learning Algorithm

QRM (Q-Learning for Reward Machines)

•Keep a Q-function for each automaton state.

•Update rule (r = 1 if u′ = uA):

Qu(s, a) = Qu(s, a) + α

(
r + γmax

a′
Qu′(s

′, a′)−Qu(s, a)

)
.

•Updates all Q-functions after every step (s, a, s′).

ISA Algorithm RL and automata learning are interleaved.

•The initial automaton does not accept nor reject anything.

•The automaton learner runs when a counterexample is found:

•multiple transitions from the current state u hold, or

• it does not correctly recognize the MDP state s.

•When a new automaton is learned, all Q-functions are reset.

Reward shaping Leverage the automaton structure: give extra reward for getting closer to the accepting state.

F (u, u′) = γΦ (u′)− Φ (u) ,where Φ (u) = |U | − d (u, uA)

Experimental Results

•Given 100 random grids, simultaneously:

• learn a policy for each of these, and

• an automaton that generalizes to all of them.

•Use compressed traces, e.g. 〈{K}, {}, {}, {o}〉 → 〈{K}, {}, {o}〉.
•Use Q-tables to represent the Q-functions.

Constraints

1. The automata are forced to be acyclic.

2. The automaton states must be visited in increas-
ing index order (symmetry breaking).
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Fig. 3: Average learning curves (10 runs). S - single task, M - multitask, R - reward shaping.

All + - I

Coffee 6.6 (0.5) 2.2 (0.2) 2.3 (0.2) 2.1 (0.3)

CoffeeMail 34.5 (2.9) 5.5 (0.4) 9.9 (0.9) 19.1 (2.2)

VisitABCD 32.5 (2.1) 1.7 (0.2) 11.6 (0.8) 19.2 (1.7)

Fig. 4: Average number of examples (setting S).

• ↑ task complexity→ + examples,+ time.

• |TL,O| u #paths(u0, uA).

S S+R M M+R

Coffee 0.5 (0.0) 0.4 (0.0) 0.3 (0.0) 0.4 (0.0)

CoffeeMail 43.3 (12.1) 36.9 (6.0) 24.8 (3.6) 24.6 (2.7)

VisitABCD 63.0 (11.4) 68.5 (13.0) 48.4 (8.8) 69.6 (8.1)

Fig. 5: Average ILASP running time.

• ILASP time << Total time.

•There is not a setting consistently better than the others.

Conclusions

•Algorithm for learning subgoals by inducing an automaton from observation traces.

•The automaton structure can be exploited using an existing RL algorithm.

•Performance is comparable to the case where the automaton is given beforehand.


