INDUCTION OF SUBGOAL AUTOMATA FOR REINFORCEMENT LEARNING
Y

Daniel Furelos-Blanco', Mark Law!, Alessandra Russo', Krysia Broda', and Anders Jonsson

Hmperial College London, UK  *Universitat Pompeu Fabra, Barcelona, Spain

Motivation Learning Subgoal Automata from Traces
e Advances to achieve generalization and transfer Output
between RL tasks are mainly due to abstractions. Input

, , , The automaton’s transition function such that the automaton:
e Abstract hierarchies have been represented using e A set of states U D {ug, ua, up}.

automata in reinforcement learning (RL) and o A set of observables ©.
automated planning.

e accepts all positive traces L+O,

o rejects all negative traces Ty o,

o A set of traces Tz o = (T . T n, T ). . . .
’ TroTro o) e neither accepts nor rejects incomplete traces T, 4.

Problem

Cuwrrent RL methods use handcerafted automata. The automaton learning task is described as an Inductive Learning from Answer Sets (ILASP) task:

e The learned rules are of two types:

~ Example
Proposed Approach Facts ed(X, Y, EDGE_ID) + Rules §(X, Y, EDGE_ID, T)
ed(ug, us, 1). ed(up, uy, 1).
""""""""""""""""""""""""""""""""""""""" e The actual transitions are defined in terms of the negative ones: 5(uo, 1y, 1, T):-not obs (s, T), step(T).
ISA (Induction of Subgoal Automata) 6(X,Y,EDGE_ID, T):-not &(X,Y,EDGE_ID, T). 0(up,us,1,T):-obs(o, T), step(T).
A method for learning and exploiting a minimal e Each trace is expressed as a set of obs(0, T) facts. 0(uo, us, 1,T):-not obs(?l, T), step(T).
automaton from observation traces perceived by ({@), {1 {0}) — {obs(d,0). obs(o,2).} 0(uo, uy, 1,T):-not obs (s, T), step(T).
an RL agent.
Agent .
e Lcarn an automaton whose transitions are labeled ' FEnvironment
/
by propositional formulas representing subgoals. Automaton Examples u,r — 8
—
e The automata learning is formulated as an in- start _> + ({=}{}{o}) : \ Z D . j * ¢
ductive logic programmaing task. ,,Am - ({=}H{}{x}) : =11
. . “ho . RL S
e The automata can be exploited by RL algorithms. (13 {*}) | . 4 N o e N
@@ ‘ I ({}{=}) 'Algorithm ;
Task (A= {h) I >
ASKS ! '
.......................................................................... ~_ ' O s,oco 14 * * B
Automata L 5, U — 0
The tasks are episodic MDPs M = o e — 0123456 73891011
(S, A,p,r,v,Sr,Sc) where:
e S is a finite set of states, Interleaved Learnmg Algorlthm
e A is a finite set of ACTIONS,
op : S x A — A(S) is a transition probability QRM (Q-Learning for Reward Machines) ISA Algorithm RL and automata learning are interleaved.
function, e Keep a )-function for each automaton state. e The nitial automaton does not accept nor reject anything.
e~ € (0,1) is a discount factor, e Update rule (r =1 if v/ = un): e The automaton learner runs when a counterexample is found:
St C 5 is the set of ¢ nal stat Itiple transitions f th t state u hold
e St C S is the set of terminal states, Ouls.a) = Ouls.a) + a (T Ay max Qu(s. ') — Qu(s, a)) | o@u iple transitions from .e current state u hold, or
e So C St is the set of goal states, and a e it does not correctly recognize the MDP state s.
or S x AxS — Risa reward function such e Updates all Q-functions after every step (s, a, s). e When a new automaton is learned, all Q-functions are reset.
that L e Reward shaping Leverage the automaton structure: give extra reward for getting closer to the accepting state.
II § €
r(s,a,s) e F(u,u') =~ (v) — ® (u),where ® (u) = |U| — d (u,us)
0 otherwise

Experimental Results

e The automaton transitions are defined by a log-

ical formula over a set of observables O. o Given 100 random grids, simultaneously:

e A labeling function L : S — 2° maps a state Constraints

. | e l[earn a policy for each of these, and
into a subset of observables perceived by the

| 1. The automata are forced to be acyclic.
e an automaton that generalizes to all of them.

agent. 7 . i 2. The automaton states must be visited in increas-
| e Use compressed traces, e.g. ({#},{},{},{o}) — ({=},{},{o}). ing index order (symmetry breaking).
Example The OFFICEWORLD  domain e Use ()-tables to represent the Q)-functions.
(Toro Icarte et al, 2018), where O =
{# 0,0, A, B,C,D,x}. 107 1.0- 107
e COFFEE: deliver coffee to the office. 08 08 _ 08
e COFFEEMAIL: deliver coffee and mail to the of- % 0. % 06 % 06
fice. 5 5 &
e VISITABCD: visit locations A, B, C' and D in c 04 c 04 c 04
< QRM (S) ISA (S) < QRM (S) ISA (S) < QRM (S) ISA (S)
order. 0.2 QRM (S+R) ISA (S+R) 0.2 QRM (S+R) ISA (S+R) 0.2 QRM (S+R) ISA (S+R)
. . . QRM (M) ISA (M) QRM (M) ISA (M) QRM (M) ISA (M)
The tasks terminate when the goal is achieved or a QRM (M+R) ISA (M+R) QRM (M+R) ISA (M+R) QRM (M+R) ISA (M+R)
. o 0.0 - - - 0.0 - - - 0.0 - - -
+ 1s broken (this is a dead-end state). 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of episodes Number of episodes Number of episodes
Fig. 3: Average learning curves (10 runs). S - single task, M - multitask, R - reward shaping.
Subgoal Automata
""""""""""""""""""""""""""""""""""""""" All + - I S S+R M M+R
A subgoal automaton s a tuple A = COFFER 6.6 (0.5) 22 (02) 23(02) 2.1 (0.3) COFFEE 05(0.0) 04 (0.0) 03(0.0) 0.4 (0.0)
(U, O, 6§, up, ua, ur) where
| | COFFEEMAIL 34.5 (2.9) 5.5 (0.4) 9.9 (0.9) 19.1 (2.2) COFFEEMAIL 43.3 (12.1) 36.9 (6.0) 24.8 (3.6) 24.6 (2.7)
e [/ is a finite set of states, Ve ABCD - - Ve ABCD ] Yy
ISIT 32.0 (2.1) 1.7 (0.2) 11.6 (0.8) 19.2 (1. ISIT 63.0 (11.4) 68.5 (13.0) 48.4 (8.8) 69.6 (3.1
e O is a set of observables (or alphabet), (2.1) 1.7(0.2) 08 (17 (114 130 (88 (8.1
O . o o Fig. 4: Average number of examples (setting S). Fig. 5: Average ILASP running time.
o0 : U x 2¥ — U is a deterministic transition | | | |
function, e | task complexity — + examples, 4+ time. e ILASP time << Total time.
oy € U is a start state. o |T1.0| = #paths(up, ua). e There is not a setting consistently better than the others.

e uy € U is the unique accepting state, and Conclusions
o up € U is the unique rejecting State. 5L L

e Algorithm for learning subgoals by inducing an automaton from observation traces.
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Impgrlal CO"ege upf Pompeu Fabra e The automaton structure can be exploited using an existing RL algorithm.
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e Performance is comparable to the case where the automaton is given beforehand.



