INDUCTION OF SUBGOAL AUTOMATA FOR REINFORCEMENT LEARNING Daniel Furelos-Blanco¹, Mark Law¹, Alessandra Russo¹, Krysia Broda¹, and Anders Jonsson² ¹Imperial College London, UK ²Universitat Pompeu Fabra, Barcelona, Spain

Motivation

• Advances to achieve *generalization* and *transfer* between RL tasks are mainly due to *abstractions*.

• Abstract hierarchies have been represented using *automata* in *reinforcement learning (RL)* and *automated planning*.

Problem Current RL methods use *handcrafted automata*.

Proposed Approach

Input	
• A set of states $U \supseteq \{u_0, u_A, u_R\}$.	
• A set of observables \mathcal{O} .	
• A set of traces $\mathcal{T}_{L,\mathcal{O}} = \langle \mathcal{T}_{L,\mathcal{O}}^+, \mathcal{T}_{L,\mathcal{O}}^-, \mathcal{T}_{L,\mathcal{O}}^I \rangle$.	

Learning Subgoal Automata from Traces

Output

The automaton's transition function such that the automaton:

- accepts all *positive traces* $\mathcal{T}_{L,\mathcal{O}}^+$,
- rejects all *negative traces* $\mathcal{T}_{L,\mathcal{O}}^-$,
- neither accepts nor rejects *incomplete traces* $\mathcal{T}_{L,\mathcal{O}}^{I}$.

The automaton learning task is described as an *Inductive Learning from Answer Sets (ILASP)* task:

• The *learned rules* are of two types:

Facts $ed(X, Y, EDGE_ID) + Rules \overline{\delta}(X, Y, EDGE_ID, T)$

Example

 $ed(u_0, u_1, 1). ed(u_0, u_A, 1).$

ISA (Induction of Subgoal Automata)

A method for learning and exploiting a minimal automaton from observation traces perceived by an RL agent.

- Learn an automaton whose transitions are labeled by propositional formulas representing *subgoals*.
- The *automata learning* is formulated as an *inductive logic programming* task.
- The automata can be exploited by RL algorithms.

Tasks

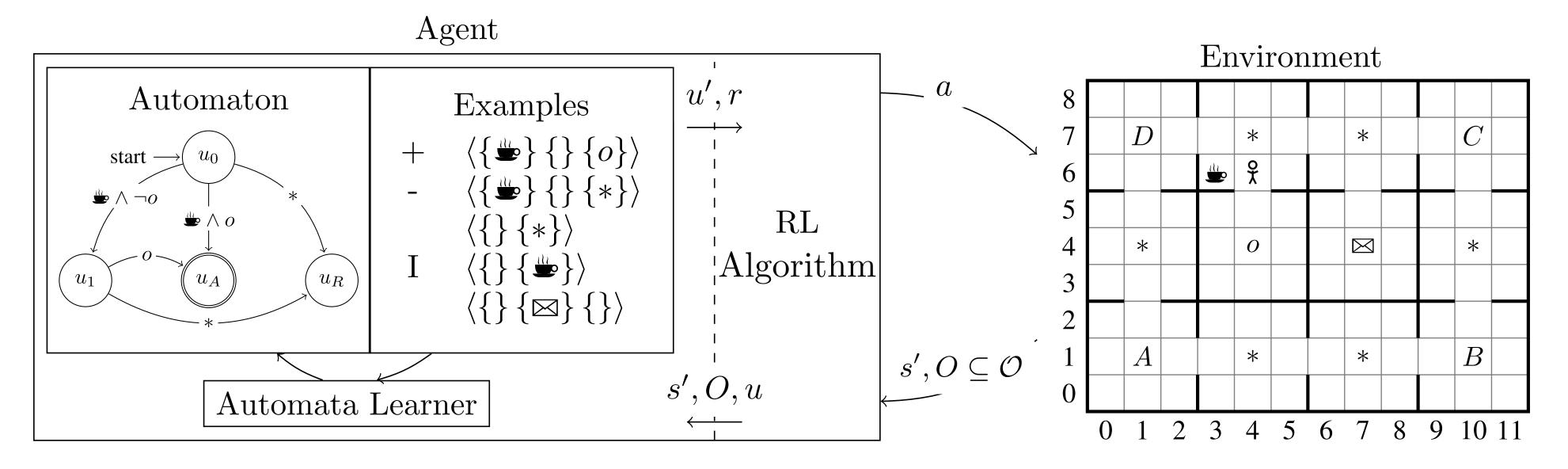
- The tasks are *episodic* MDPs $\mathcal{M} = \langle S, A, p, r, \gamma, S_T, S_G \rangle$ where:
- S is a finite set of states,
- A is a finite set of actions,
- $p: S \times A \to \Delta(S)$ is a transition probability function,
- $\gamma \in [0, 1)$ is a discount factor,
- $S_T \subset S$ is the set of *terminal states*,

• The actual transitions are defined in terms of the *negative* ones:

 $\delta(\mathbf{X}, \mathbf{Y}, \mathbf{EDGE_ID}, \mathbf{T}) := \mathbf{not} \ \overline{\delta}(\mathbf{X}, \mathbf{Y}, \mathbf{EDGE_ID}, \mathbf{T}).$

- Each *trace* is expressed as a set of obs(0, T) facts.
 - $\big\langle \{ \textcircled{\texttt{w}} \}, \{ \}, \{ o \} \big\rangle \rightarrow \{ \texttt{obs}(\textcircled{\texttt{w}}, \mathbf{0}). \ \texttt{obs}(o, \mathbf{2}). \}$

$$\begin{split} & \overline{\delta}(\mathbf{u}_0,\mathbf{u}_1,\mathbf{1},\mathbf{T}) := \texttt{not obs}(\textcircled{l},\mathbf{T}),\texttt{step}(\mathbf{T}). \\ & \overline{\delta}(\mathbf{u}_0,\mathbf{u}_1,\mathbf{1},\mathbf{T}) := \texttt{obs}(o,\mathbf{T}),\texttt{step}(\mathbf{T}). \\ & \overline{\delta}(\mathbf{u}_0,\mathbf{u}_A,\mathbf{1},\mathbf{T}) := \texttt{not obs}(o,\mathbf{T}),\texttt{step}(\mathbf{T}). \\ & \overline{\delta}(\mathbf{u}_0,\mathbf{u}_A,\mathbf{1},\mathbf{T}) := \texttt{not obs}(\textcircled{l},\mathbf{T}),\texttt{step}(\mathbf{T}). \end{split}$$



Interleaved Learning Algorithm

- **QRM (Q-Learning for Reward Machines)**
- Keep a Q-function for each automaton state.
- Update rule $(r = 1 \text{ if } u' = u_A)$:

ISA Algorithm RL and automata learning are *interleaved*.
The *initial automaton* does not accept nor reject anything.
The automaton learner runs when a *counterexample* is found:
multiple transitions from the current state u hold, or

• When a new automaton is learned, all Q-functions are *reset*.

• it does not correctly recognize the MDP state s.

• $S_G \subseteq S_T$ is the set of *goal states*, and

• $r: S \times A \times S \to \mathbb{R}$ is a *reward function* such that

 $r(s, a, s') = \begin{cases} 1 & \text{if } s' \in S_G \\ 0 & \text{otherwise} \end{cases}.$

The automaton transitions are defined by a logical formula over a set of observables O.
A labeling function L : S → 2^O maps a state into a subset of observables perceived by the agent.

Example The OFFICEWORLD domain (Toro Icarte et al., 2018), where $\mathcal{O} = \{\textcircled{B}, \boxtimes, o, A, B, C, D, *\}$.

- COFFEE: deliver coffee to the office.
- COFFEEMAIL: deliver coffee and mail to the office.
- VISITABCD: visit locations A, B, C and D in order.

The tasks terminate when the goal is achieved or a * is broken (this is a dead-end state).

 $Q_{u}(s,a) = Q_{u}(s,a) + \alpha \left(r + \gamma \max_{a'} Q_{u'}(s',a') - Q_{u}(s,a) \right).$

• Updates all Q-functions after every step (s, a, s').

Reward shaping Leverage the *automaton structure*: give extra reward for getting closer to the accepting state.

 $F(u, u') = \gamma \Phi(u') - \Phi(u), \text{ where } \Phi(u) = |U| - d(u, u_A)$

Experimental Results

- Given 100 random grids, simultaneously:
 - learn a policy for each of these, and
- an automaton that generalizes to all of them.
- Use *compressed traces*, e.g. $\langle \{ \clubsuit \}, \{ \}, \{ \}, \{ o \} \rangle \rightarrow \langle \{ \clubsuit \}, \{ o \} \rangle$.
- Use Q-tables to represent the Q-functions.

reward 9.0

Average

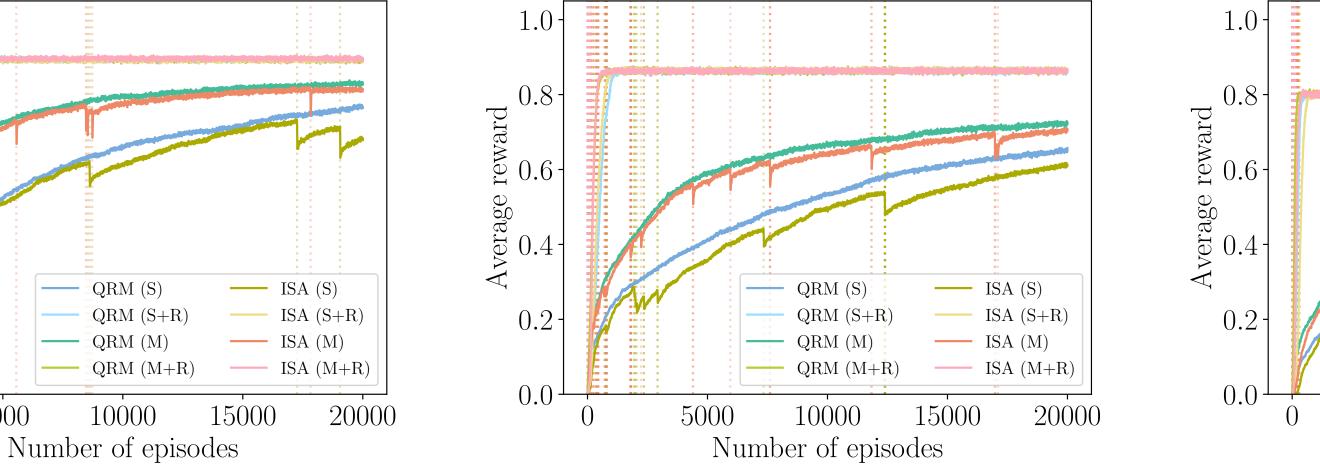
0.2

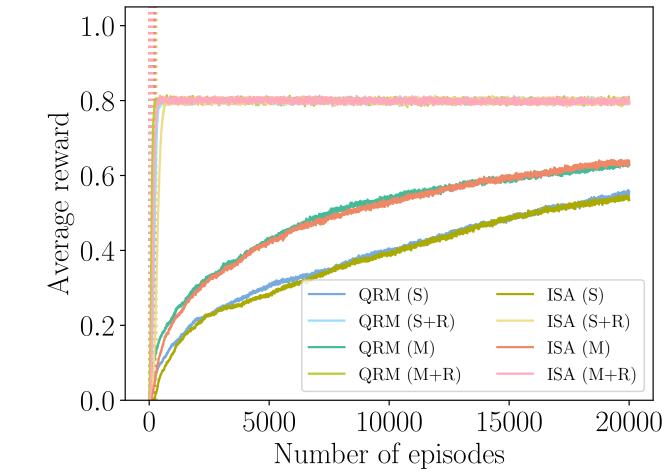
0.0

Constraints

1. The automata are forced to be *acyclic*.

2. The automaton states must be visited in increasing index order (*symmetry breaking*).





Subgoal Automata

A subgoal automaton is a tuple $\mathcal{A} = \langle U, \mathcal{O}, \delta, u_0, u_A, u_R \rangle$ where

• U is a finite set of states,

O is a set of observables (or alphabet),
δ : U × 2^O → U is a deterministic transition function,

• $u_0 \in U$ is a start state,

u_A ∈ U is the unique accepting state, and
u_R ∈ U is the unique rejecting state.

	All	+	_	Ι		
Coffee	6.6(0.5)	2.2(0.2)	2.3(0.2)	2.1(0.3)		
CoffeeMail	34.5 (2.9)	5.5(0.4)	9.9(0.9)	19.1(2.2)		
VISITABCD	32.5 (2.1)	1.7(0.2)	11.6 (0.8)	19.2(1.7)		
Fig. 4: Average number of examples (setting \mathbf{S}).						
\uparrow task complex:	$ity \rightarrow + e$	xamples.	+ time.			
$ \mathcal{T}_{L,\mathcal{O}} \cong \# ext{path}$	$\operatorname{ns}(u_0, u_A).$					
				С		
Algorithm for b	earning su	honals h	v inducina	r an autom		

Fig. 3: Average learning curves (10 runs). ${f S}$ - single task, ${f M}$ - multitask, ${f R}$ - reward shaping.

	\mathbf{S}	$\mathbf{S} + \mathbf{R}$	\mathbf{M}	M+R		
Coffee	0.5(0.0)	0.4(0.0)	0.3(0.0)	0.4(0.0)		
CoffeeMail	43.3 (12.1)	36.9(6.0)	24.8 (3.6)	24.6(2.7)		
VISITABCD	63.0 (11.4)	68.5 (13.0)	48.4 (8.8)	69.6 (8.1)		
Fig. 5: Average ILASP running time.						
• ILASP time $<<$ Total time.						
• There is not a	setting cor	nsistently b	etter than	the other		

Conclusions

- Algorithm for learning subgoals by inducing an automaton from observation traces.
- The automaton structure can be exploited using an existing RL algorithm.

• Performance is comparable to the case where the automaton is given beforehand.